Abstract:
The present invention concerns an oligonucleotide-functionalized hydrophobic polymer nanoparticle and method of its preparation. Said nanoparticle is a dye-loaded polymeric nanoparticle, and being functionalized by:
Abstract:
Probe systems and methods are provided for detecting nucleic acid targets using labeled polynucleotide probes and antiprobes that interact together and with complementary targets. These interactions result in signaling changes that indicate target frequency and provide error-checking functions that facilitate single base discrimination. These probe:antiprobe compositions enable real-time PCR detection, end-point detection and microarray detection of microbial species, drug resistant mutants, and cancer related variants. The probe:antiprobe may be an internal probe between two primers or may be a primer-probe. The probe also may be modified by introducing a base mismatch to increase thermodynamic discrimination of a correct versus incorrect target differing by a single base. Probe systems also are provided for use in methods of increasing target amplification and detecting specific single base variants.
Abstract:
The present disclosure provides a method for detecting multiple target nucleic acid sequences in a sample using a plurality of IDed double-stranded probes. Each IDed double-stranded probe comprises a double-stranded nucleic acid hybridization probe associated with an IDed substrate. Also provided is a method for determining the sequence of a nucleic acid by using a plurality of IDed double-stranded probes.
Abstract:
In some embodiments, the present inventions relates generally to compositions, methods and kits for use in discriminating sequence variation between different alleles. More specifically, in some embodiments, the present invention provides for compositions, methods and kits for quantitating rare (e.g., mutant) allelic variants, such as SNPs, or nucleotide (NT) insertions or deletions, in samples comprising abundant (e.g., wild type) allelic variants with high specificity and selectivity. In particular, in some embodiments, the invention relates to a highly selective method for mutation detection referred to as competitive allele-specific TaqMan PCR (“cast-PCR”).
Abstract:
In some embodiments, the present inventions relates generally to compositions, methods and kits for use in discriminating sequence variation between different alleles. More specifically, in some embodiments, the present invention provides for compositions, methods and kits for quantitating rare (e.g., mutant) allelic variants, such as SNPs, or nucleotide (NT) insertions or deletions, in samples comprising abundant (e.g., wild type) allelic variants with high specificity and selectivity. In particular, in some embodiments, the invention relates to a highly selective method for mutation detection referred to as competitive allele-specific TaqMan PCR (“cast-PCR”).
Abstract:
A nucleic acid (NA) detection method combines ultra-specific probe, on-chip isotachophoresis (ITP) which can separate single strand and double strand NAs, and enzyme amplification. The ITP device has a sieving matrix between the LE (leading electrolyte) and TE (trailing electrolyte) reservoirs, for separating double-strand and single-strand NAs. The LE or TE reservoir also contains a spacer ion having a mobility between the LE and the TE. The sample and a double-strand NA probe is added to the TE reservoir, the probe being formed of a protector strand modified with a fluorescent molecule and a complement strand, where the protector strand is released in the presence of the target NA. Fluorescent signal is detected downstream of the sieving matrix. Alternatively, the protector strand is modified with an enzyme and a single-strand NA modified with a substrate of the enzyme is added to the reaction mixture downstream of the sieving matrix.
Abstract:
A nucleic acid sequence measuring method includes measuring fluorescence from the nucleic acid sequence measuring device supplied with a sample solution. The device includes a fluorescent probe added with a fluorescent molecule, and a quenching probe added with a quenching substance. The fluorescent probe and/or the quenching probe has a detection part detecting a predetermined nucleic acid sequence. Fluorescence from the fluorescent molecule is quenched by the quenching substance coupled with the fluorescent molecule when the hybridization between the detection target nucleic acid and the detection part has not occurred, and fluorescence is emitted from the fluorescent molecule separated from the quenching substance when the hybridization has occurred.
Abstract:
The present invention relates to a method of distinguishing genotypes using PCR-PHFA including: a nucleic acid amplification step in which a mutation site-including region of a gene is amplified by a nucleic acid amplification reaction, thereby obtaining an amplification reaction solution; and a distinction step in which the amplification reaction solution obtained from the nucleic acid amplification step is mixed with a reference double-stranded nucleic acid having a specific genotype on the mutation site as well as being labeled with a labeling substance, and the mixture is subjected to a competitive strand displacement reaction, and the level of the occurrence of strand displacement is assessed so as to distinguish the identity; and the competitive strand displacement reaction is performed under a condition to suppress a polymerase extension reaction, and a genotype distinguishing kit for use in the distinct of genotypes by this method.
Abstract:
Methods of identifying inhibitors of retroviral propagation, tRNA used in the methods, and kits, including the tRNA, which can be used in the methods, are disclosed. Methods of treating or preventing retroviral infections by administering an effective amount of the inhibitors, and pharmaceutical compositions including the inhibitors, are also disclosed. The methods involve forming a mixture comprising a linear sequence of a tRNA anticodon stem loop fragment that is not capable of forming a stem-loop, a target nucleic acid molecule capable of binding to the tRNA anticodon stem loop fragment, and a test compound. The mixture is incubated under conditions that allow binding of the tRNA anticodon stem loop fragment and the target nucleic acid molecule in the absence of the test compound. Assays can then be performed that detect whether or not the test compound inhibits the binding of the tRNA anticodon stem loop fragment and the target nucleic acid molecule.
Abstract:
The present disclosure provides methods for determining the ploidy status of a chromosome in a gestating fetus from genotypic data measured from a sample of DNA from the mother of the fetus and from the fetus, and from genotypic data from the mother and optionally also from the father. The ploidy state is determined by using a joint distribution model to create a set of expected allele distributions for different possible fetal ploidy states given the parental genotypic data, and comparing the expected allelic distributions to the pattern of measured allelic distributions measured in the mixed sample, and choosing the ploidy state whose expected allelic distribution pattern most closely matches the observed allelic distribution pattern. In an embodiment, the mixed sample of DNA may be preferentially enriched at a plurality of polymorphic loci in a way that minimizes the allelic bias.