Abstract:
In one embodiment, a node coupled to solid state drives (SSDs) of a plurality of storage arrays executes a storage input/output (I/O) stack having a plurality of layers. The node includes a non-volatile random access memory (NVRAM). A first portion of the NVRAM is configured as a write-back cache to store write data associated with a write request and a second portion of the NVRAM is configured as one or more non-volatile logs (NVLogs) to record metadata associated with the write request. The write data is passed from the write-back cache over a first path of the storage I/O stack for storage on a first storage array and the metadata is passed from the one or more NVLogs over a second path of the storage I/O stack for storage on a second storage array, wherein the first path is different from the second path.
Abstract:
The embodiments described herein are directed to the use of hashing in a file system metadata arrangement that reduces an amount of metadata stored in a memory of a node in a cluster and that reduces the amount of metadata needed to process an input/output (I/O) request at the node. Illustratively, the embodiments are directed to cuckoo hashing and, in particular, to a manner in which cuckoo hashing may be modified and applied to construct the file system metadata arrangement. In an embodiment, the file system metadata arrangement may be illustratively include a hash collision technique that employs a hash collision computation to determine a unique candidate extent key (having a candidate hash table index) in the event of a collision, i.e., a hash table index collides with a slot of a hash table matching a key found in the slot.
Abstract:
In one embodiment, a layered file system includes a volume layer and an extent store layer configured to provide sequential log-structured layout of data and metadata on solid state drives (SSDs) of one or more storage arrays. The data is organized as variable-length extents of one or more logical units (LUNs). The metadata includes volume metadata mappings from offset ranges of a LUN to extent keys and extent metadata mappings of the extent keys to storage locations of the extents on the SSDs. The extent store layer maintaining the extent metadata mappings determines whether an extent is stored on a storage array, and, in response to determination that the extent is stored on the storage array, returns an extent key for the stored extent to the volume layer to enable global inline de-duplication that obviates writing a duplicate copy of the extent on the storage array.
Abstract:
A technique reduces an amount of metadata stored in a memory of a node in a cluster. An extent store layer of a storage input/output (I/O) stack executing on the node stores key-value pairs in a plurality of data structures, e.g., cuckoo hash tables, resident in the memory. The cuckoo hash table embodies metadata that describes an extent and, as such, may be organized to associate a location on disk with a value that identifies the location on disk. The value may be embodied as a locator that includes a reference count used to support deduplication functionality of the extent store layer with respect to the extent. The reference count is divided into two portions: a delta count portion stored in memory for each slot of the hash table and an overflow count portion stored on disk in a header of each extent. One bit of the delta count portion is reserved as an overflow bit that indicates whether the in-memory reference count has overflowed. Another bit of the delta count portion is reserved as a sign bit that indicates whether the value of the remaining delta count portion, which stores the “delta” of the reference count, is positive or negative. Overflow updates to the overflow count portion on disk are postponed until all of the bits of the delta count portion are consumed as negative/positive transitions.
Abstract:
Data consistency and availability can be provided at the granularity of logical storage objects in storage solutions that use storage virtualization in clustered storage environments. To ensure consistency of data across different storage elements, synchronization is performed across the different storage elements. Changes to data are synchronized across storage elements in different clusters by propagating the changes from a primary logical storage object to a secondary logical storage object. To satisfy the strictest RPOs while maintaining performance, change requests are intercepted prior to being sent to a filesystem that hosts the primary logical storage object and propagated to a different managing storage element associated with the secondary logical storage object.
Abstract:
The embodiments described herein are directed to the use of hashing in a file system metadata arrangement that reduces an amount of metadata stored in a memory of a node in a cluster and that reduces the amount of metadata needed to process an input/output (I/O) request at the node. Illustratively, the embodiments are directed to cuckoo hashing and, in particular, to a manner in which cuckoo hashing may be modified and applied to construct the file system metadata arrangement. In an embodiment, the file system metadata arrangement may be illustratively include a hash collision technique that employs a hash collision computation to determine a unique candidate extent key (having a candidate hash table index) in the event of a collision, i.e., a hash table index collides with a slot of a hash table matching a key found in the slot.
Abstract:
Various systems and methods are described for configuring a data storage system. In one embodiment, a plurality of actual capacities of a plurality of storage devices of the data storage system are identified and divided into a plurality of capacity slices. The plurality of capacity slices are combined into a plurality of chunks of capacity slices, each having a combination of characteristics of the underlying physical storage devices. The chunks of capacity slices are then mapped to a plurality of logical storage devices. A group of the plurality of logical storage devices is then organized into a redundant array of logical storage devices.
Abstract:
Among other things, one or more techniques and/or systems are provided for storing data within a hybrid storage aggregate comprising a lower-latency storage tier and a higher-latency storage tier. In particular, frequently accessed data, randomly accessed data, and/or short lived data may be stored (e.g., read caching and/or write caching) within the lower-latency storage tier. Infrequently accessed data and/or sequentially accessed data may be stored within the higher-latency storage tier. Because the hybrid storage aggregate may comprise a single logical container derived from the higher-latency storage tier and the lower-latency storage tier, additional storage and/or file system functionality may be implemented across the storage tiers. For example, deduplication functionality, caching functionality, backup/restore functionality, and/or other functionality may be provided through a single file system (or other type of arrangement) and/or a cache map implemented within the hybrid storage aggregate.
Abstract:
In one embodiment, a node of a cluster having a plurality of nodes, executes a storage input/output (I/O) stack having a redundant array of independent disks (RAID) layer. The RAID layer organizes solid state drives (SSDs) within one or more storage arrays as a plurality of RAID groups associated with one or more extent stores. The RAID groups are formed from slices of storage spaces of the SSDs instead of entire storage spaces of the SSDs. This provides for RAID groups to co-exist on a same set of the SSDs.
Abstract:
In one embodiment, use of hashing in a file system metadata arrangement reduces an amount of metadata stored in a memory of a node in a cluster and reduces the amount of metadata needed to process an input/output (I/O) request at the node. Illustratively, cuckoo hashing may be modified and applied to construct the file system metadata arrangement. The file system metadata arrangement may be illustratively configured as a key-value extent store embodied as a data structure, e.g., a cuckoo hash table, wherein a value, such as a hash table index, may be configured as an index and applied to the cuckoo hash table to obtain a key, such as an extent key, configured to reference a location of an extent on one or more storage devices, such as solid state drives.