摘要:
A nanowire light emitting device and a method of fabricating the same are provided. The nanowire light emitting device includes a first conductive layer on a substrate, a plurality of nanowires on the first conductive layer, each nanowire having a p-type doped portion and an n-type doped portion on both ends, a light emitting layer between the p-type doped portion and n-type doped portion, and a second conductive layer formed on the nanowires. The doped portions are formed by adsorbing molecules around a circumference thereof.
摘要:
A nanowire light emitting device is provided. The nanowire light emitting device includes a substrate, a first conductive layer formed on the substrate, a plurality of nanowires vertically formed on the first conductive layer, each nanowire comprising a p-doped portion and an n-doped portion, a light emitting layer between the p-doped portion and the n-doped portion, a second conductive layer formed on the nanowires, and an insulating polymer in which a light emitting material is embedded, filling a space between the nanowires. The color of light emitted from the light emitting layer varies according to the light emitting material.
摘要:
A nanowire light emitting device is provided. The nanowire light emitting device includes a substrate, a first conductive layer formed on the substrate, a plurality of nanowires vertically formed on the first conductive layer, each nanowire comprising a p-doped portion and an n-doped portion, a light emitting layer between the p-doped portion and the n-doped portion, a second conductive layer formed on the nanowires, and an insulating polymer in which a light emitting material is embedded, filling a space between the nanowires. The color of light emitted from the light emitting layer varies according to the light emitting material.
摘要:
A nanowire light emitting device and a method of fabricating the same are provided. The nanowire light emitting device includes a first conductive layer formed on a substrate, a plurality of nanowires vertically formed on the first conductive layer, each of the nanowires having an n-type doped portion and a p-type doped portion, a light emitting layer between the n-type doped portion and the p-type doped portion, first and second conductive organic polymers filling a space corresponding to the p-type doped portion and the n-type doped portion, respectively, and a second conductive layer formed on the nanowires. The organic polymers dope the corresponding surface of the nanowires by receiving electrons from the corresponding surface of the nanowires or by providing electrons to the surface of the nanowires.
摘要:
A nanowire light emitting device and method of fabricating the same. The nanowire light emitting device includes: a substrate; a first electrode layer formed on the substrate; a plurality of nanowires vertically formed on the first electrode layer, the nanowire having a p-type doped portion and an n-type doped portion formed separately from each other on both sides thereof; a light emitting layer formed between the p-type doped portion and the n-type doped portion; and a second electrode layer formed on the nanowires, wherein the p-type doped portion is formed by chemically binding a radical having an only half-occupied outermost orbital shell to a corresponding surface of the respective nanowires so as to donate an electron to the radical.
摘要:
A p-type semiconductor carbon nanotube and a method of manufacturing the same are provided. The p-type semiconductor carbon nanotube includes a carbon nanotube; and a halogen element that is attached to an inner wall of the carbon nanotube and accepts electrons from the carbon nanotube to achieve p-type doping of the carbon nanotube. The p-type semiconductor carbon nanotube is stable at high temperatures and can maintain intrinsic good electrical conductivity of the carbon nanotube. The p-type semiconductor carbon nanotube can be relatively easily obtained using a conventional method of manufacturing a carbon nanotube, thereby significantly broadening the range of application of the carbon nanotube to electronic devices.
摘要:
A p-type semiconductor carbon nanotube and a method of manufacturing the same are provided. The p-type semiconductor carbon nanotube includes a carbon nanotube; and a halogen element that is attached to an inner wall of the carbon nanotube and accepts electrons from the carbon nanotube to achieve p-type doping of the carbon nanotube. The p-type semiconductor carbon nanotube is stable at high temperatures and can maintain intrinsic good electrical conductivity of the carbon nanotube. The p-type semiconductor carbon nanotube can be relatively easily obtained using a conventional method of manufacturing a carbon nanotube, thereby significantly broadening the range of application of the carbon nanotube to electronic devices.
摘要:
Provided is a method of reliably operating a highly integratable nonvolatile memory device. The nonvolatile memory device may include a string selection transistor, a plurality of memory transistors, and a ground selection transistor between a bit line and a common source line. In the nonvolatile memory device, data may be erased from the memory transistors by applying an erasing voltage to the bit line or the common source line.
摘要:
Provided is a method of reliably operating a highly integratable nonvolatile memory device. The nonvolatile memory device may include a string selection transistor, a plurality of memory transistors, and a ground selection transistor between a bit line and a common source line. In the nonvolatile memory device, data may be erased from the memory transistors by applying an erasing voltage to the bit line or the common source line.
摘要:
Provided is a method of reliably operating a highly integratable nonvolatile memory device. The nonvolatile memory device may include a string selection transistor, a plurality of memory transistors, and a ground selection transistor between a bit line and a common source line. In the nonvolatile memory device, data may be erased from the memory transistors by applying an erasing voltage to the bit line or the common source line.