Abstract:
An exemplary printable composition comprises a liquid or gel suspension of a plurality of metallic nanofibers or nanowires; a first solvent; and a viscosity modifier, resin, or binder. In various embodiments, the metallic nanofibers are between about 10 microns to about 100 microns in length, are between about 10 nm to about 120 nm in diameter, and are typically functionalized with a coating or partial coating of polyvinyl pyrrolidone or a similar compound. An exemplary metallic nanofiber ink which can be printed to produce a substantially transparent conductor comprises a plurality of metallic nanofibers; one or more solvents such as 1-butanol, ethanol, 1-pentanol, n-methylpyrrolidone, cyclohexanone, cyclopentanone, 1-hexanol, acetic acid, cyclohexanol, or mixtures thereof; and a viscosity modifier, resin, or binder such as polyvinyl pyrrolidone or a polyimide, for example.
Abstract:
A flexible light sheet includes a bottom conductor layer overlying a flexible substrate. An array of vertical light emitting diodes (VLEDs) is printed as an ink over the bottom conductor layer so that bottom electrodes of the VLEDs electrically contact the bottom conductor layer. A top electrode of the VLEDs is formed of a first transparent conductor layer, and a temporary hydrophobic layer is formed over the first transparent conductor layer. A dielectric material is deposited between the VLEDs but is automatically de-wetted off the hydrophobic layer. The hydrophobic layer is then removed, and a second transparent conductor layer is deposited to electrically contact the top electrode of the VLEDs. The VLEDs can be made less than 10 microns in diameter since no top metal bump electrode is used. The VLEDs are illuminated by a voltage differential between the bottom conductor layer and the second transparent conductor layer.
Abstract:
In one embodiment, a flexible light sheet includes a transparent, thin polymer substrate on which is formed a dielectric first light scattering layer containing nano-particles. A transparent conductor layer is formed over the first light scattering layer. An array of microscopic, inorganic vertical LEDs is printed over the transparent conductor layer so that bottom electrodes of the LEDs make electrical contact to the conductor layer. A dielectric second light scattering layer, also containing the nano-particles, is printed over the transparent conductor layer to laterally surround the LEDs. A top conductor layer makes electrical contact to the top LED electrodes to connect the LEDs in parallel. Light from the LEDs is scattered by the nano-particles in the two light scattering layers by Mei scattering. This reduces total internal reflection in both the first light scattering layer and the transparent conductor layer to increase light extraction.