Abstract:
The endoscope system includes: a laser diode for an endoscope that emits illumination light whose amount can be controlled; an image pickup device that outputs an image pickup signal of an image obtained by receiving reflected light of the illumination light; a photodiode that receives a part of the illumination light of the laser diode; a thermistor that detects a temperature of the laser diode; a thermistor that detects a temperature of the photodiode; a detection light amount temperature correction circuit that corrects an amount of light received by the photodiode based on the temperature of the photodiode; and a laser diode control circuit that controls driving of the laser diode so that an amount of the illumination light becomes a set value based on a corrected amount of received light corrected by the detection light amount temperature correction circuit and the temperature of the laser diode.
Abstract:
A subject observation system includes a light source and an image obtaining unit. The light source emits observation light including a spectral component of a wavelength and applies the light to a subject. The image obtaining unit images reflected light from an irradiation region of the subject to which the light has been applied and obtains at least two observation images in different wavelength regions based on image signals corresponding to a blue region, a green region and a red region. The light includes components of light emission spectra in the regions. The light emission spectrum in the blue region is smaller in a wavelength region in which absorption intensity for a specific observation target in the subject is relatively low than in other regions.
Abstract:
A light source device having a wavelength converting unit having a first wavelength converting member for absorbing a first excitation light having a first wavelength range, and emitting a first wavelength-converted light; and a second wavelength converting member for absorbing a second excitation light having a second wavelength range, and emitting a second wavelength-converted light, wherein the wavelength converting unit emits a first emission light having a first spectral shape when irradiated with the first excitation light, and emits a second emission light having a second spectral shape when irradiated with the second excitation light, and wherein at least a portion of the first wavelength converting member and at least a portion of the second wavelength converting members are arranged within an irradiation space that is commonly irradiated by both the first excitation light and the second excitation light.
Abstract:
A light source apparatus includes a light conversion unit converting primary light into secondary light. The light conversion unit includes a light conversion member, a holder and a reflection member. The holder includes an incidence portion through which the primary light enters and an exit portion through which at least part of the secondary light exits in a direction crossing an optical axis of the primary light. The light conversion member is arranged on the optical axis of the primary light. Part of the secondary light allowed to exit from the light conversion member in a direction different from a direction toward the exit portion is reflected by the reflection member and exited from the exit portion. The ratio of reentering to the light conversion member is reduced.