摘要:
A light source apparatus includes a light conversion unit converting primary light into secondary light. The light conversion unit includes a light conversion member, a holder and a reflection member. The holder includes an incidence portion through which the primary light enters and an exit portion through which at least part of the secondary light exits in a direction crossing an optical axis of the primary light. The light conversion member is arranged on the optical axis of the primary light. Part of the secondary light allowed to exit from the light conversion member in a direction different from a direction toward the exit portion is reflected by the reflection member and exited from the exit portion. The ratio of reentering to the light conversion member is reduced.
摘要:
The invention provides an illumination device comprising an envelope enclosing a light source, preferably a LED, and a luminescent material. The envelope comprises a transmissive part, and a reflective part, wherein the reflective part comprises a reflective ceramic material. The ceramic material can be used for heat dissipation.
摘要:
A volumetric light emitting device includes a substrate, a semiconductor light emitting diode disposed on the substrate and a reflector ring extending axially from the substrate. The reflector ring defines a first volume bounded by the substrate, an inner wall of the reflector ring, and a terminal plane at a distal end of the reflector ring. An encapsulant fills the first volume and encapsulates the semiconductor light emitting diode. A volumetric light conversion element surrounds the reflector ring and the first volume wherein the volumetric light conversion element is adapted to down-convert light emitted from the semiconductor light emitting diode at a first wavelength and emit the down-converted light at a second wavelength. A second volume of encapsulant or scattering material extends axially between the terminal plane and the volumetric light conversion element.
摘要:
The present disclosure involves a lighting apparatus. The lighting apparatus includes a photonic device that generates light. The lighting apparatus includes a printed circuit board (PCB) on which the photonic device is located. The lighting apparatus includes a diffuser cap having a curved profile covering the PCB and the photonic device. The diffuser cap has a textured surface for scattering light generated by the photonic device. The lighting apparatus includes a thermally conductive cup that surrounds the diffuser cap and thermal conductively coupled to the PCB. The cup has a reflective inner surface that reflects light transmitting through the diffuser cap. The lighting apparatus includes a heat dissipation structure for dissipating heat generated by the photonic device. The heat dissipation structure is thermally coupled to the cup.
摘要:
A linear light source and a method of manufacturing the linear light source are disclosed. The linear light source includes a light emitting diode (LED) array, a light pipe, and a shell with a linear exit slit aperture. Cutouts of the light pipe provides a slanted surface to reflect portions of light rays along the length of the light pipe out of the linear exit slit aperture.
摘要:
The present disclosure involves a lighting apparatus. The lighting apparatus includes a photonic device that generates light. The lighting apparatus includes a printed circuit board (PCB) on which the photonic device is located. The lighting apparatus includes a diffuser cap having a curved profile covering the PCB and the photonic device. The diffuser cap has a textured surface for scattering light generated by the photonic device. The lighting apparatus includes a thermally conductive cup that surrounds the diffuser cap and thermal conductively coupled to the PCB. The cup has a reflective inner surface that reflects light transmitting through the diffuser cap. The lighting apparatus includes a heat dissipation structure for dissipating heat generated by the photonic device. The heat dissipation structure is thermally coupled to the cup.
摘要:
Compact reflective lens for a high intensity light emitting diode light sources having improved output beam characteristics are disclosed. The reflective lenses can be configured to increase output intensity, control output light characteristics, and reduce glare.
摘要:
The invention provides an illumination device comprising an envelope enclosing a light source, preferably a LED, and a luminescent material. The envelope comprises a transmissive part, and a reflective part, wherein the reflective part comprises a reflective ceramic material. The ceramic material can be used for heat dissipation.
摘要:
A lighting device comprising first and second groups of solid state light emitters, that emit light having approximate dominant wavelength (in nm) of 441-448 (or 442-450, 444-455, 444-446, 442-445 or 444-452) and 555 nm to 585 nm, respectively. If the first and second groups are illuminated, a mixture of light would, in the absence of any additional light, have a color point within one or more of first, second, third, fourth and fifth areas on the 1931 CIE Chromaticity Diagram. In some embodiment, the lighting device further comprises a third group that emits light having approximate dominant wavelength (in nm) of 600-640 (or 605-610, 605-607, 600-606, 602-606 or 615-620). Also, methods of lighting.
摘要:
The present disclosure involves a lighting apparatus. The lighting apparatus includes a photonic device that generates light. The lighting apparatus includes a printed circuit board (PCB) on which the photonic device is located. The lighting apparatus includes a diffuser cap having a curved profile covering the PCB and the photonic device. The diffuser cap has a textured surface for scattering light generated by the photonic device. The lighting apparatus includes a thermally conductive cup that surrounds the diffuser cap and thermal conductively coupled to the PCB. The cup has a reflective inner surface that reflects light transmitting through the diffuser cap. The lighting apparatus includes a heat dissipation structure for dissipating heat generated by the photonic device. The heat dissipation structure is thermally coupled to the cup.