Abstract:
A light source device includes a semiconductor light source that radiates light at a light quantity according to an applied current, a circuit that determines a current instruction value based on control information, first and second drive units, each of the units that is connected to the semiconductor light source and the circuit, and is capable of outputting, to the semiconductor light source, a current having magnitude corresponding to the current instruction value. The control information is set based on brightness of an image captured by an imaging element. When one of the first and second drive units is switched to the other, the circuit causes the other to start the current output after an elapse of a predetermined stop time period having a length at a predetermined ratio or less to a frame rate on the imaging element since a stop of the current output from the one.
Abstract:
An illumination apparatus in an endoscopic system includes a light source unit having lasers with different peak wavelengths, the lasers being divided by peak wavelength into narrow band light source groups, a color imaging unit that detects the illumination color of illumination light, a memory that stores an appropriate illumination color for each narrow band light source group, an output calculator that, for each narrow band light source group, compares the illumination color obtained upon light emission by the lasers belonging to the narrow band light source group with the appropriate illumination color of the narrow band light source group and calculates an appropriate output for each of the lasers belonging to the narrow band light source group, and a light source controller that controls the lasers on the basis of the calculated appropriate output.
Abstract:
An endoscope light source device includes a light source to emit light, and a speckle reduction member to scatter the light. The reduction member has a surface including thickness variation to provide the light with an optical path difference. The device also includes a drive to move the reduction member, and a lens to condense the light passed through the reduction member onto a light guide of an endoscope. The surface of the reduction member has inclination of an average inclination angle. The average inclination angle is determined so that a light quantity loss rate of the entering light into the light guide by scattering of the reduction member and refraction of the lens has a positive value equal to or smaller than an effective allowable loss rate.
Abstract:
A light source system includes an intermediary adapter which mechanically connects a first light source module, a first irradiation module, a second light source module and a second irradiation module, a first connection mechanism which connects the first light source module and the intermediary adapter and a second connection mechanism which connects the second light source module and the intermediary adapter. The first irradiation module and the second irradiation module are interchangeably connected to the intermediary adapter in the same plane of the intermediary adapter.
Abstract:
An observation apparatus includes an imager, a light source unit, an image processor and a light intensity adjusting section. The imager includes types of elements which generate a first signal when the elements receive light included in a sensitivity region. The light source unit includes light sources to emit narrow spectrum light, wavelengths of the light being different from one another and being set so that at least one of the wavelengths is included in each of the sensitivity regions. The image processor generates display data indicating a color image on the basis of the image data. The light intensity adjusting section separately adjusts respective light intensity of the light sources.
Abstract:
A light source unit for use with an endoscope. The light source including: a primary light source configured to emit primary light; and a first connector provided on an optical path of the primary light and to which each of a plurality of optical conversion units are attachable and removable. Wherein each of the plurality of the optical conversion units include an optical conversion element having an optical conversion function to convert optical properties of the primary light to generate secondary light and each of the plurality of the optical conversion units further having a second connector configured to detachably engage the first connector to transmit the primary light to the optical conversion element; and an optical conversion unit is selected from the plurality of optical conversion units based on the optical conversion function desired for the secondary light, the secondary light being an illumination light of the endoscope.
Abstract:
An illumination system includes a light source device configured by an excitation light source, a light guiding member and a wavelength converter that are connected in order, and an operation check device. The system further includes: a connector configured to directly and physically connect the operation check device to a light signal emitting end which includes the wavelength converter; a detector configured to detect a light signal emitted from the light signal emitting end when the light signal emitting end and the operation check device are connected by the connector; and an operation determiner configured to determine the operations of the excitation light source, the light guiding member, and the wavelength converter by a detection result in the detector.
Abstract:
An imaging system includes a lighting controller for independently controlling emission of illumination light to be emitted by a light source in: (i) a non-all-line exposure period, which contains a reading period in which electrical signals are sequentially read out on a horizontal-line basis from an image sensor for one frame or one field period, and in which at least one horizontal line of the horizontal lines for the one frame or the one field period is not exposed to light, and (ii) in an all-line exposure period, in which all of the horizontal lines for the one frame or the one field period are exposed to light.
Abstract:
An endoscope system includes an illuminator comprising a light source adapted to emit light of a light amount corresponding to a magnitude of supply energy, the illuminator configured to emit the light in a form of illumination light for illuminating a subject; an imager configured to image the subject to acquire an image; a controller configured to control the illuminator by adjusting the magnitude of the supply energy within a range less or equal to a maximum supply value, to bring brightness of the illumination light close to a target value; and a setter configured to set the maximum supply value according to a temperature of the light source.
Abstract:
A first light source module includes a light source-side connection hole to which a irradiation-side connector of a irradiation module is mechanically detachably attached. The light source-side connection hole is made common to the first irradiation-side connector, which is mounted in the first irradiation module, and the second irradiation-side connector, which is mounted in the second irradiation module, such that the light source-side connection hole is connectable to the first irradiation-side connector and the second irradiation-side connector.