Abstract:
A pulse wave detecting device includes a sensor section and a control unit. The sensor section is rotatable about a first axis and is rotatable about a second axis. The control unit determines a rotation angle about the second axis based on DC components of a plurality of a pressure detecting elements included in at least one of element rows. Then, the sensor section is pressed against the body surface in a state that the sensor section is controlled in the optimal roll angle, the pulse wave is detected based on pressure signals detected from the pressure detecting elements and the vital information is calculated based on the detected pulse wave.
Abstract:
The pulse wave detecting device includes a sensor section in which two element rows consisting of a plurality of pressure detecting elements arranged in a direction B are arranged in a direction A perpendicular to the direction B, and an air bag pressing the sensor section to a body surface in a state that the direction B intersects a direction in which an artery below the body surface of a living body. An arrangement interval between the two element rows in the direction A is 5 mm or more and 15 mm or less.
Abstract:
Provided is a frequency transfer characteristic blood vessel index value calculation apparatus including a pulse wave acquisition unit that acquires first pulse wave data of a pulse wave at a first site, and second pulse wave data of a pulse wave at a second site; a pulse wave frequency characteristic derivation unit that derives a first frequency characteristic of the first pulse wave from the first pulse wave data and derives a second frequency characteristic of the second pulse wave from the second pulse wave data; a frequency transfer characteristic calculation unit that calculates a frequency transfer characteristic for a system that uses the first pulse wave as input and the second pulse wave as output; a frequency transfer characteristic correction unit that corrects the frequency transfer characteristic.
Abstract:
A pulse wave detection apparatus has a sensor chip that includes a substrate that has a shape of extending so as to be elongated in an X direction, and that is arranged so as to intersect an artery. A pressure sensor array is formed on the substrate and is made up of pressure sensor elements that are arranged side-by-side in the X direction. An electrode terminal array for transmitting output from the pressure sensor elements to the outside of the sensor chip is formed in a region that opposes an end portion of the pressure sensor array on the substrate. Regions that correspond to two sides of the pressure sensor array on the substrate are planar surfaces on which electrode terminals are not located.
Abstract:
A toothbrush of the present invention includes: a main body including a head portion having a bristle raising surface on which bristles are provided in a standing manner; a light emission unit configured to emit light through a specific region of the bristle raising surface to a tooth surface; and a light reception unit configured to receive radiated light from the tooth surface resulting from the light through the specific region, the light emission unit and the light reception unit being provided in the main body. The toothbrush also includes a detection unit configured to collectively detect whether or not dental plaque or dental calculus is present on the tooth surface based on an output from the light reception unit. The toothbrush further includes a determination unit configured to determine that dental calculus is present on the tooth surface.
Abstract:
A pulse wave detector includes: a pressure pulse wave sensor that includes: sensor chips each having an element row including plural pressure detection elements arranged in one direction; a substrate to which the sensor chips are fixed; a protection member for protecting the substrate and the sensor chips; and a filling material being filled in a space between detection faces of the sensor chips on which the pressure detection elements are formed and opening sections provided in the protection member, the opening sections being disposed on a side opposite to a side of the substrate to which the sensor chips are fixed and being disposed at positions opposed to the detection faces in a vertical direction perpendicular to the detection faces, and a rotation mechanism for rotating the pressure pulse wave sensor around a direction orthogonal to each of the one direction and the vertical direction.
Abstract:
A pressure pulse wave measurement apparatus includes: a sensor unit in which an element column including a plurality of pressure detection elements that are arranged side by side in one direction is formed; a pressing unit configured to press the sensor unit against a body surface of a living body; and a rotation control member configured to rotate the sensor unit about each of two axes that are orthogonal to a pressing direction of the pressing unit. The rotation control member includes a first member and a second member that are relatively rotated about a rotation axis extending in the pressing direction, and the first member and the second member both include a motion conversion mechanism for converting a rotational motion realized by the first member and the second member being relatively rotated, into a rotational motion of the sensor unit about each of the two axes.
Abstract:
A measurement device includes a pulse wave signal acquisition unit, a pulse wave velocity calculator, a transfer function calculator, a phase diagram classifier, and an aneurysm determinator. The pulse wave signal acquisition unit acquires time-series pulse wave signals of each of an upper arm and an ankle of the subject. The pulse wave velocity calculator obtains a brachial-ankle pulse wave velocity based on the pulse wave signal of the upper arm and the pulse wave signal of the ankle. The transfer function calculator calculates a transfer function from the pulse wave signal of the upper arm and the pulse wave signal of the ankle. The phase diagram classifier classifies the phase diagram of each subject into any one of four groups. The aneurysm determinator determines presence or absence of the abdominal aortic aneurysm by a criterion set according to each group.
Abstract:
A blood pressure measuring cuff according to the present invention includes a pressing cuff which is belt-shaped, is wrapped around a part to be measured, and receives supply of a pressurizing fluid to press the part to be measured. An arterial pressure sensor for detecting pressure applied to an artery passing portion of the part to be measured by the pressing cuff is disposed at a portion of an inner peripheral surface of the pressing cuff which should face an artery of the part to be measured, separately from the pressing cuff.
Abstract:
A pulse wave detection method includes: increasing a pressing force of a pressing member for pressing a strain sensor fixed thereto against a body surface, the flexible strain sensor having a plurality of strain detection elements arranged on a substrate; determining a deformation stop timing at which deformation of a detection face of the strain sensor has been stopped based on the strain detection signal detected by each of the plurality of strain detection elements in a pressure raising process in which the pressing force is increased; setting a level of the strain detection signal detected at the deformation stop timing as a reference level; calibrating the first strain detection signal detected after the deformation stop timing based on the reference level; and generating a pressure signal from the calibrated first strain detection signal.