Abstract:
An organic light-emitting diode includes at least two segments arranged adjacent to one another, a scattering layer that at least partially scatters the light generated in each of the segments, and at least one separating region located in the scattering layer, wherein the separating region has a transmittance for light generated in the segments of at most 20%, the separating region, when viewed in a plan view, is arranged in a transitional region between adjacent segments such that within the scattering layer propagation of light between the segments is suppressed, the segments include organic layer sequences each located between a first electrode and a second electrode, the segments are distant from one another in a direction parallel to the main directions of extension, and the scattering layer directly adjoins the first electrode which is light-transmitting and directly adjoins a transparent layer on a side remote from the first electrode.
Abstract:
A method for producing an organic light-emitting diode and an organic light-emitting diode are disclosed. In an embodiment, the method includes providing a substrate with a continuous application surface, generating multiple adhesion regions on the application surface, the adhesion regions being completely surrounded by the application surface, applying metal nanowires over the entire surface of the application surface, removing the metal nanowires outside of the adhesion regions by a washing process using a solvent such that the remaining metal nanowires completely or partly form a light-permeable electrode of the organic light-emitting diode, and applying an organic layer sequence onto the light-permeable electrode.
Abstract:
An light-emitting apparatus and a method for producing a light-emitting apparatus are disclosed. In an embodiment, the apparatus includes at least one organic device and an outcoupling layer, wherein the at least one organic device emits electromagnetic radiation during operation, wherein the outcoupling layer contains optical structures, and wherein the apparatus has a non-Lambertian radiation distribution curve during operation. The outcoupling layer influences the radiation passing through it in an optically varying manner by the optical structures along a lateral direction in order to produce the non-Lambertian radiation distribution curve.
Abstract:
In one embodiment the organic light-emitting diode includes a substrate having a substrate upper side, an electrically conductive grid structure for a current distribution and an electrically conductive particle layer, which are located at the substrate upper side. The grid structure may be embedded in the particle layer. An organic layer sequence for generating the radiation is located directly on the particle layer. A covering electrode is attached to the organic layer sequence. The particle layer comprises scattering particles having a first average diameter and electrically conductive particles having a smaller second average diameter. The scattering particles are densely packed together with the conductive particles. The particle layer forms, together with the grid structure, a substrate electrode for the organic layer sequence.
Abstract:
In various exemplary embodiments, an optoelectronic component device is provided. The optoelectronic component device includes a first organic light emitting diode and a second organic light emitting diode, which are connected to one another in physical contact one above the other. The first organic light emitting diode is electrically connected in parallel with the second organic light emitting diode. The first organic light emitting diode and the second organic light emitting diode have at least an approximately identical or identical electronic diode characteristic and/or an approximately identical or identical electronic diode characteristic variable.
Abstract:
An organic radiation-emitting component and a method for manufacturing an organic radiation-emitting component are disclosed. In an embodiment, the component includes a base substrate and a plurality of light-emitting units disposed on the base substrate, wherein the light-emitting units are arranged laterally offset with respect to one another, wherein the plurality of light-emitting units is divided into light-emitting units of a first type and light-emitting units of a second type, wherein a current flow through the light-emitting units of the first type is directed in an opposite direction to a current flow through the light-emitting units of the second type during operation, and wherein the light-emitting units are grouped in neighboring pairs, each neighboring pair consists of a light-emitting unit of a first type and a light-emitting unit of a second type, both first electrodes or both second electrodes of which are electrically connected to one another.
Abstract:
An optical element includes a light guide plate with a first major surface and with a second major surface opposite the first major surface and with side faces connecting the first and second major surfaces, wherein the light guide plate includes a matrix material transparent to ultraviolet light in which scattering centers are embedded, at least one light-emitting semiconductor device that couples ultraviolet light into the light guide plate via a side face when in operation, a first filter layer on the first major surface and a second filter layer on the second major surface, wherein the filter layers opaque to ultraviolet light and at least partially transparent to visible light, and a first photochromic layer at least on the first major surface, between the light guide panel and the first filter layer, with a transparency to visible light by ultraviolet light.
Abstract:
A light-emitting component is disclosed. In an embodiment the light-emitting device includes a first layer stack for generating light, at least one additional layer stack for generating light, wherein each of the first layer stack and the at least one additional layer stack are separately drivable from one another and an auxiliary structure arranged between the first layer stacks and the at least one additional layer stacks.
Abstract:
An organic light-emitting device and a method for producing an organic light emitting device are disclosed. In an embodiment the device includes a substrate and at least one layer sequence arranged on the substrate and suitable for generating electromagnetic radiation. The at least one layer sequence includes at least one first electrode surface arranged on the substrate, at least one second electrode surface arranged on the first electrode surface and an organic functional layer stack having organic functional layers between the first electrode surface and the second electrode surface. The organic functional layer stack includes at least one organic light-emitting layer, wherein the at least one organic light-emitting layer is configured to emit light, wherein the organic functional layer stack includes at least one inhomogeneity layer, and wherein a thickness of the at least one inhomogeneity layer varies in a lateral direction.
Abstract:
An optoelectronic device includes a flexible organic light-emitting diode having a main extension plane, a first retaining element having a first major surface formed in accordance with a bent surface, and a second retaining element, wherein the OLED is arranged between the first retaining element and the second retaining element, and the OLED is mechanically fixed by the first retaining element and/or the second retaining element such that the main extension plane of the OLED is formed in accordance with the bent surface.