摘要:
In one embodiment, a router operating in a hierarchically routed computer network may receive collected data from one or more hierarchically lower devices in the network (e.g., hierarchically lower sensors or routers). The collected data may then be converted to aggregated metadata according to a dynamic schema, and the aggregated metadata is stored at the router. The aggregated metadata may also be transmitted to one or more hierarchically higher routers in the network. Queries may then be served by the router based on the aggregated metadata, accordingly.
摘要:
A method is provided in one example and can include receiving a source data stream, generating a base layer sub-stream from the source data stream, and generating an enhancement layer sub-stream from the source data stream. The method further includes communicating the base layer sub-stream to a client device using a first communication protocol, and communicating the enhancement layer sub-stream to the client device using a second communication protocol. In a particular example, the one-to-many communication protocol is a multicast communication protocol and the second communication protocol is a unicast communication protocol. In another example, the base layer sub-stream is sent to the client device via a first network connection and the enhancement layer sub-stream is sent to the client device via a second network connection.
摘要:
A statistical transition map is built based on mobile wireless device user mobility history data. This data is useful to assist various wireless local area network applications. Received signal strength and location trace information associated with movements of mobile wireless devices in a wireless network is collected. The received signal strength and location trace information is converted to a sequence of natural language pseudo-location word labels representing pseudo-locations of each mobile wireless device as each mobile wireless device moves about with respect to a plurality of wireless access point devices in the wireless network. A statistical transition map is generated for each mobile wireless device from the sequence of natural language pseudo-location word labels using a natural language model. A probability of a next pseudo-location for a particular mobile wireless device is computed based on its current location and its statistical transition map.
摘要:
The present invention provides improved methods and devices for managing network congestion. Preferred implementations of the invention allow congestion to be pushed from congestion points in the core of a network to reaction points, which may be edge devices, host devices or components thereof. Preferably, rate limiters shape individual flows of the reaction points that are causing congestion. Parameters of these rate limiters are preferably tuned based on feedback from congestion points, e.g., in the form of backward congestion notification (“BCN”) messages. In some implementations, such BCN messages include congestion change information and at least one instantaneous measure of congestion. The instantaneous measure(s) of congestion may be relative to a threshold of a particular queue and/or relative to a threshold of a buffer that includes a plurality of queues.
摘要:
A device includes a multistage filter and an elephant trap. The multistage filter has hash functions and an array. The multistage filter is operable to receive a packet associated with a candidate heavy network user and send the packet to the hash functions. The hash functions generate hash function output values corresponding to indices in the array. The elephant trap is connected to the multistage filter. The elephant trap includes a buffer and probabilistic sampling logic. The probabilistic sampling logic is operable to attempt to add information associated with the packet to the buffer a particular percentage of the time based in part on the result of the multistage filter lookup. The buffer is operable to hold information associated with the packet, counter information, and timestamp information.
摘要:
A system includes an on-board unit (OBU) in communication with an internal subsystem in a vehicle on at least one Ethernet network and a node on a wireless network. A method in one embodiment includes receiving a message on the Ethernet network in the vehicle, encapsulating the message to facilitate translation to Ethernet protocol if the message is not in Ethernet protocol, and transmitting the message in Ethernet protocol to its destination. Certain embodiments include optimizing data transmission over the wireless network using redundancy caches, dictionaries, object contexts databases, speech templates and protocol header templates, and cross layer optimization of data flow from a receiver to a sender over a TCP connection. Certain embodiments also include dynamically identifying and selecting an operating frequency with least interference for data transmission over the wireless network.
摘要:
The present invention provides methods and devices for implementing a Low Latency Ethernet (“LLE”) solution, also referred to herein as a Data Center Ethernet (“DCE”) solution, which simplifies the connectivity of data centers and provides a high bandwidth, low latency network for carrying Ethernet and storage traffic. Some aspects of the invention involve transforming FC frames into a format suitable for transport on an Ethernet. Some preferred implementations of the invention implement multiple virtual lanes (“VLs”) in a single physical connection of a data center or similar network. Some VLs are “drop” VLs, with Ethernet-like behavior, and others are “no-drop” lanes with FC-like behavior. Some preferred implementations of the invention provide guaranteed bandwidth based on credits and VL. Active buffer management allows for both high reliability and low latency while using small frame buffers. Preferably, the rules for active buffer management are different for drop and no drop VLs.
摘要:
In one embodiment, a router operating in a hierarchically routed computer network may receive collected data from one or more hierarchically lower devices in the network (e.g., hierarchically lower sensors or routers). The collected data may then be converted to aggregated metadata according to a dynamic schema, and the aggregated metadata is stored at the router. The aggregated metadata may also be transmitted to one or more hierarchically higher routers in the network. Queries may then be served by the router based on the aggregated metadata, accordingly.
摘要:
Media-aware and TCP-compatible bandwidth sharing may be provided. In various embodiments, a network node may periodically update a virtual congestion level for a transmission stream in a network. The transmission stream may comprise at least one video stream and at least one data stream. The network node may then calculate, based at least in part on the virtual congestion level, a random packet marking probability or a random packet drop probability. In turn, the network node may either drop or mark transmission packets according to the calculated marking and dropping probability. The network node may further calculate an optimal video transmission rate for the at least one video stream and adjust a video transmission rate for the at least one video stream accordingly. Rate-distortions parameters for the at least one video stream may influence the optimal video transmission rate calculation for the at least one video stream.
摘要:
The present invention provides improved methods and devices for managing network congestion. Preferred implementations of the invention allow congestion to be pushed from congestion points in the core of a network to reaction points, which may be edge devices, host devices or components thereof. Preferably, rate limiters shape individual flows of the reaction points that are causing congestion. Parameters of these rate limiters are preferably tuned based on feedback from congestion points, e.g., in the form of backward congestion notification (“BCN”) messages. In some implementations, such BCN messages include congestion change information and at least one instantaneous measure of congestion. The instantaneous measure(s) of congestion may be relative to a threshold of a particular queue and/or relative to a threshold of a buffer that includes a plurality of queues.