Abstract:
An imaging device including: pixel cells each comprising: a photoelectric converter including two electrodes and a photoelectric conversion layer therebetween; a field effect transistor having a gate and a channel region; and a node between the photoelectric converter and the field effect transistor. The field effect transistor outputs an electric signal corresponding to change in dielectric constant between the electrodes, the change being caused by incident light on the photoelectric conversion layer. Cpd1, Cn1, Cpd2 and Cn2 satisfy a relation of Cpd1/Cn1
Abstract:
An imaging device includes a unit pixel cell. The unit pixel cell captures first data in a first exposure period and captures second data in a second exposure period different from the first exposure period, the first exposure period and the second exposure period being included in a frame period. A sensitivity per unit time of the unit pixel cell in the first exposure period is different from a sensitivity per unit time of the unit pixel cell in the second exposure period. The imaging device outputs multiple-exposure image data including at least the first data and the second data.
Abstract:
A solid-state imaging device according to an aspect of the present disclosure includes pixel including: a first and second electrode located in a same layer, the second electrode being located between the first electrode and the other first electrodes included in adjacent pixels; an organic photoelectric conversion film including a first surface and a second surface, the first surface being in contact with the first electrode and the second electrode; and a counter electrode located on the second surface. The organic photoelectric conversion film extends over the pixels. The first electrode is an electrode through which electrons or holes generated in the organic photoelectric conversion film are extracted. An area ratio of the first electrode to the each pixel is 25% or less. And a total area ratio of a sum of the first electrode and the second electrode to the each pixel is 40% or greater.
Abstract:
A method for driving an imaging device which includes unit pixel cells each including a first electrode, a second electrode, and a photoelectric conversion layer between the first electrode and second electrode, the photoelectric conversion layer having a photocurrent characteristic including a first voltage range, a second voltage range, and a third voltage range where an absolute value of a rate of change of the current density relative to the bias voltage is less than in the first voltage range and the second voltage range, the method including supplying a first voltage to the second electrode in a first period, and supplying a second voltage different from the first voltage to the second electrode in a second period different from the first period such that the bias voltage applied to the photoelectric conversion layer falls within the third voltage range.
Abstract:
An optical sensor includes: a semiconductor layer including first and second regions; a gate electrode; a gate insulating layer including a photoelectric conversion layer; a voltage supply circuit; and a signal detection circuit connected to the first region. The photoelectric conversion layer has a photocurrent characteristic including first and second voltage ranges where an absolute value of a current density increases as an absolute value of a bias voltage increases, and a third voltage range where an absolute value of a rate of change of the current density relative to the bias voltage is less than in the first and second voltage ranges, The voltage supply circuit applies a predetermined voltage between the gate electrode and the second region such that the bias voltage falls within the third voltage range. The signal detection circuit detects an electrical signal corresponding to a change of a capacitance of the photoelectric conversion layer.
Abstract:
An imaging device includes: a semiconductor substrate; a photoelectric conversion element including a first electrode, a second electrode, and a photoelectric conversion film, supported on the semiconductor substrate, and generating a signal by performing photoelectric conversion on incident light; a multilayer wiring structure including an upper wiring layer and a lower wiring layer provided between the semiconductor substrate and the second electrode; and a signal detection circuit provided in the semiconductor substrate and the multilayer wiring structure, including a signal detection transistor and a first capacitance element, and detecting the signal. The signal detection transistor includes a gate and a source region and a drain region, the first capacitance element includes a first lower electrode, a first upper electrode, and a dielectric film disposed therebetween, the upper wiring layer is disposed between the second electrode and the gate, and the upper wiring layer includes the first upper electrode.
Abstract:
A preparation element set including an image sensor including a sensor surface, a sensor back surface, and a board; a package including a front surface, a back surface, and terminals on the back surface, the front surface touching or facing the sensor back surface; and a transparent plate facing the sensor surface with a subject placed therebetween, wherein the board includes a board surface and a board back surface, a distance between the board surface and the sensor surface is less than a distance between the board back surface and the sensor surface, a distance between the board surface and the sensor back surface is more than a distance between the board back surface and the sensor back surface, conductive holes pierce the board from the board surface to the board back surface, and conductors on the board surface are electrically connected to terminals by using the conductive holes.
Abstract:
An imaging device includes a semiconductor substrate and at least one unit pixel cell provided to a surface of the semiconductor substrate. Each of the at least one unit pixel cell includes: a photoelectric converter including a pixel electrode and a photoelectric conversion layer located on the pixel electrode, the photoelectric converter converting incident light into electric charges; a charge detection transistor that includes a part of the semiconductor substrate and detects the electric charges; and a reset transistor that includes a gate electrode and initializes a voltage of the photoelectric converter. The pixel electrode is located above the charge detection transistor. The reset transistor is located between the charge detection transistor and the pixel electrode. When viewed from a direction normal to the surface of the semiconductor substrate, at least a part of the gate electrode is located outside the pixel electrode.