摘要:
An analytical method comprising performing a first fractionation of a polymer sample based on differences in crystallizability to provide a first set of sample fractions, performing a first analysis on the first set of sample fractions, performing a second fractionation of the first set of sample fractions to produce a second set of sample fractions, performing a second analysis on the second set of sample fractions, and synchronizing the first fractionation and second fractionation to provide about concurrent analysis of the polymer sample.
摘要:
The present invention provides several methods of determining values of physical or chemical properties of polymers. In these methods, at least two polymer training samples are provided. Characteristics of the polymer microstructures of the training samples are correlated with values of physical or chemical properties of the training samples. These correlations are subsequently applied to the respective characteristics of polymer test samples in order to determine the values of physical or chemical properties of the test samples.
摘要:
The present invention provides several methods of determining values of physical or chemical properties of polymers. In these methods, at least two polymer training samples are provided. Characteristics of the polymer microstructures of the training samples are correlated with values of physical or chemical properties of the training samples. These correlations are subsequently applied to the respective characteristics of polymer test samples in order to determine the values of physical or chemical properties of the test samples.
摘要:
Methods of producing a polymer include contacting at least one olefin with a catalyst prepared by contacting a support comprising alumina with a sulfating agent and with chromium. Polymer compositions produced in this manner may exhibit relatively low levels of long chain branching and relatively high molecular weights. In an embodiment, polymer compositions with a PDI in a range of from about 6 to about 15 have MW values greater than about 300,000 g/mol and Eo values less than about 1×106 Pa·s. The polymer compositions may further have Theological breadths greater than about 0.25 and relaxation times less than about 10 seconds.
摘要:
A method of converting a rusted surface to a durable one comprises applying a composition for converting a rusted metal surface to form durable preparative coatings thereon, the rust conversion composition comprising a reducing agent which will function to reduce trivalent iron to divalent iron on the substrate, an organic monomer which is capable of polymerization in the presence of the reducing agent, on the surface, and a free radical initiator which will function to polymerize the organic monomer to form the durable coating.
摘要:
A rust converting composition comprises ascorbic acid, lignin sulfonate, and a water insoluble polymer, such as polyvinylpyrrolidone, and optionally a thickener. The invention further provides a method for removing rust from rusted metal surfaces by applying the composition, allowing the composition to remain on the rusted metal surface until substantially all of the rust is converted to a water soluble form, and removing the composition from the metal surface by washing with water.
摘要:
Polymer fractions such as polyethylene fractions can be produced that have a PDI less than about 2.3 and a Mw greater than about 1,000,000 g/mol, 3,000,000 g/mol, or 6,000,000 g/mol. Such polyethylene fractions are separated from a UHMWPE parent polymer by first dissolving the parent polymer in a relatively good solvent. The conditions employed for such dissolution are selected to reduce the degradation of the parent polymer. The resulting parent solution is transported into a fractionation column in which a support is disposed. The fractionation column is thereafter operated at conditions effective to form a precipitate on the support comprising the desired polyethylene fraction. The polyethylene fraction may then be recovered from the fractionation column by repeatedly displacing a solvent/non-solvent mixture into the column to dissolve the polyethylene fraction. The relative concentrations of the solvent and the non-solvent are based on a solvent gradient profile of the polyethylene parent polymer.
摘要:
A multimodal polyethylene composition having at least two polyethylene components, wherein each component has a molecular weight distribution of equal to or less than about 5, one component has a higher molecular weight than the other component, and the higher molecular weight component has an “a” parameter value of equal to or greater than about 0.35 when fitted to the Carreau-Yasuda equation with n=0.
摘要:
Methods of preparing a polymerization catalyst are provided that include contacting a support comprising alumina with a sulfating agent and with chromium. In an embodiment in which the chromium is provided from a chromium compound such as chromium oxide, the support may be calcined after loading the sulfating agent and the chromium on the support. Alternatively, the sulfating agent can be loaded on the support while calcining it. In another embodiment in which the chromium is provided from an organochromium compound, the support may be calcined after contacting it with the sulfating agent and before contacting it with the organochromium compound. Catalysts compositions formed by the foregoing method are provided. In an embodiment, catalyst compositions comprise chromium and a sulfate treated alumina support. The catalyst compositions have an activity for ethylene polymerization that is at least about 25% greater than an activity of the same catalyst without sulfate.
摘要:
A copolymer of ethylene and a higher alpha olefin, preferably 1-hexene, can be produced using an activated chromium containing catalyst system and a cocatalyst selected from the group consisting of trialkylboron, trialkylsiloxyalutninum, and a combination of trialkylboron and thalkylaluminum compounds. The polymerization process must be carefully controlled to produce a copolymer resin having an exceptionally broad molecular weight distribution, extremely high PENT ESCR values, and a natural branch profile that impacts branching preferably into the high molecular weight portion of the polymer. The resulting copolymer resin is especially useful in high stiffness pipe applications.