Abstract:
This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for displaying images using a frame-specific contributing color (FSCC). In one aspect, an input is configured to receive image data corresponding to a current image frame. Contributing color selection logic is configured, based on received image data, to obtain a FSCC for use in conjunction with a set of frame-independent contributing colors (FICCs) to generate the current image frame on a display. In addition, subframe generation logic is configured to process the received image data for the current image frame to generate at least two subframes for each of the FICCs and the obtained FSCC such that an output by the display of the generated subframes results in the display of the current image frame.
Abstract:
This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for enhancing display viewability in high ambient conditions without excessive increase in power consumption. In one aspect, a controller associated with the display device can be configured to obtain an indication of ambient light conditions from an ambient light sensor or from a host device hosting the display device. Upon receiving an image frame, the controller can derive a set of color subfields and determine a bit-depth value for each color subfield based on the obtained indication of current ambient light conditions and mapping data which maps ranges of ambient light to respective bit-depth values on a color subfield by color subfield basis. The controller can then generate a number of subframes for each color subfield based on the respective determined bit-depth value and cause the generated subframes to be displayed.
Abstract:
This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for displaying image frames. A smoothing process can be utilized for mitigating image artifacts similar to dynamic false contouring (DFC). In some implementations, were a display to transition from an field specific contributing color (FSCC) having only two component colors to a target FSCC with meaningful intensities of all three component colors, or vice versa, and that target FSCC remained constant over a series of image frames, DFC-like artifacts would be mitigated at the transition by gradually, over a first number of image frames in a series of image frames, reducing the intensities of all component colors of the FSCC to values at or near zero, before gradually increasing the intensities of the component colors included in the target FSCC to their final target values over a remainder of image frames in the series of image frames.
Abstract:
This disclosure provides systems, methods and apparatus for reducing flicker in display devices. In some image formation processes, a controller can form an image by utilizing a set of color subfields in displaying subframes associated with each of the color subfields. In some implementations, the controller may determine whether to divide or split the display of certain subframes based on environmental factors such as ambient light with or without concern for flicker. In some implementations, the controller may determine to divide or split the display of an x-channel subframe based on the ambient light. The controller can monitor the ambient light levels via an ambient light sensor, and compare the ambient light level to an ambient light threshold. If the ambient light levels go below the ambient light threshold, the controller can employ subframe division or splitting.
Abstract:
This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for displaying images using a frame-specific contributing color (FSCC). In one aspect, an input is configured to receive image data corresponding to a current image frame. Contributing color selection logic is configured, based on received image data, to obtain a FSCC for use in conjunction with a set of frame-independent contributing colors (FICCs) to generate the current image frame on a display. In addition, subframe generation logic is configured to process the received image data for the current image frame to generate at least two subframes for each of the FICCs and the obtained FSCC such that an output by the display of the generated subframes results in the display of the current image frame.
Abstract:
This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for displaying image frames. A smoothing process can be utilized for mitigating image artifacts similar to dynamic false contouring (DFC). In some implementations, were a display to transition from an field specific contributing color (FSCC) having only two component colors to a target FSCC with meaningful intensities of all three component colors, or vice versa, and that target FSCC remained constant over a series of image frames, DFC-like artifacts would be mitigated at the transition by gradually, over a first number of image frames in a series of image frames, reducing the intensities of all component colors of the FSCC to values at or near zero, before gradually increasing the intensities of the component colors included in the target FSCC to their final target values over a remainder of image frames in the series of image frames.
Abstract:
This disclosure provides systems, methods and apparatus for improving light output resolution of a backlight by individually controlling light sources in the backlight. Illumination intensity levels of light sources are individually controlled such that an overall illumination intensity level of all the light sources is substantially equal to a desired whole backlight illumination intensity value. The individual illumination levels of the light sources or a group of the light sources is controlled such that the backlight is uniformly illuminated. In some implementations, the illumination intensity levels are varied over different portions of an illumination period to provide uniform illumination of the backlight.
Abstract:
Systems, methods and apparatus, including computer programs encoded on computer storage media, of this disclosure allow for forming an image frame on a display device. In one aspect, a controller associated with a display device can be configured to correct for output white point shift due to variation, across separate color subfields of an image frame, in the respective number of subframes or the respective subframe weights. The controller can determine aggregate subframe weights for at least two color subfields and adjust at least one display parameter based on the determined aggregate subframe weights, to shift the output white point towards a white point of a target color gamut. The display parameter(s) can include a duty cycle of a color subfield, tristimulus coordinates of light used to illuminate a color subfield or gamut mapping function. The controller can display the image frame according to the adjusted display parameter(s).
Abstract:
This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for enhancing display viewability in high ambient conditions without excessive increase in power consumption. In one aspect, a controller associated with the display device can be configured to obtain an indication of ambient light conditions from an ambient light sensor or from a host device hosting the display device. Upon receiving an image frame, the controller can derive a set of color subfields and determine a bit-depth value for each color subfield based on the obtained indication of current ambient light conditions and mapping data which maps ranges of ambient light to respective bit-depth values on a color subfield by color subfield basis. The controller can then generate a number of subframes for each color subfield based on the respective determined bit-depth value and cause the generated subframes to be displayed.
Abstract:
This disclosure provides systems, methods and apparatus for providing analog control for operating the states of a light modulator in a pixel. In one aspect, a pixel circuit can be coupled to the light modulator, and can control the duration for which the light modulator is operated in an open or closed state based on an analog data voltage. In some implementations, the pixel circuit includes a voltage controlled current source (VCCS), which draws a current of a magnitude that is based on the magnitude of the data voltage. The current drawn by the VCCS can be used to control a charge and a voltage on an actuation capacitor coupled to the light modulator. The rate of change of the voltage on the actuation capacitor, and the duration for which the light modulator is maintained in a particular state, is a function of the data voltage applied to the VCCS.