Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may transmit an indication that the UE is capable of supporting one or more channels of a first priority and one or more channels of a second priority, where the first priority is higher than the second. The UE may receive signaling indicating a search space set in a control-resource set (CORESET) that corresponds to grant candidates for scheduling the one or more channels of the first priority. The UE may determine a second search space set in the CORESET that corresponds to grant candidates for scheduling the one or more channels of the second priority. The UE may decode, within a search space of the first search space set, a grant for scheduling the one or more channels of the first priority.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a base station (BS) may configure a UE to transmit a cross link interference reference signal (CLI-RS) using a bandwidth and frequency similar to those used for a synchronization signal. In another aspect, a BS may may configure a UE to measure a cross link interference reference signal (CLI-RS) transmitted using a bandwidth and frequency similar to those used for a synchronization signal. In other aspects, a base station may transmit, to a UE, an instruction to transmit or measure a CLI-RS. Numerous other aspects are provided.
Abstract:
Techniques for access terminal radio link monitoring on a shared communication medium are disclosed. In an aspect, an access terminal detects a missed reference signal event associated with a radio link established on the shared communication medium, wherein detecting the missed reference signal event comprises determining that the access terminal did not detect a reference signal for measuring a quality of the radio link transmitted during a reference signal configuration window, assigns an error metric to the missed reference signal event based on reference signal monitoring capabilities of the access terminal, and triggers a radio link failure based on the assigned error metric. In an aspect, the missed reference signal event may be a missed Discovery Reference Signaling (DRS) event, the error metric may be a Block Error Rate (BLER) weight, and the reference signal for measuring the quality of the radio link comprises a Cell-specific Reference Signal (CRS).
Abstract:
Systems and methodologies are described that facilitate defining new control channels in legacy wireless networks. Control data resources for new systems can be defined over resources reserved for general data communications in the legacy wireless network specification. In this regard, legacy devices can still be supported by devices implementing new control data resources, and the new control data resources can avoid substantial interference that is typically exhibited over legacy control and/or reference signal resources by instead using the general data resources. In addition, new system devices can avoid scheduling data communication resources over the new control resources to create a substantially non-interfered global control segment. Control data can be transmitted over the segment using beacon-based technologies, reuse schemes, and/or the like.
Abstract:
Techniques for transmitting and detecting for overhead channels and signals in a wireless network are described. In an aspect, a base station may blank (i.e., not transmit) at least one overhead transmission on certain resources in order to detect for the at least one overhead transmission of another base station. In one design, the base station may (i) send the overhead transmission(s) on a first subset of designated resources and (ii) blank the overhead transmission(s) on a second subset of the designated resources. The designated resources may be resources on which the overhead transmission(s) are sent by macro base stations. The base station may detect for the overhead transmission(s) from at least one other base station on the second subset of the designated resources. In another aspect, the base station may transmit the overhead transmission(s) on additional resources different from the designated resources.
Abstract:
Techniques for using multiple modulation schemes for a single packet are described. Each data packet is processed and transmitted in up to T blocks, where T>1. Multiple modulation schemes are used for the T blocks to achieve good performance. A transmitter encodes a data packet to generate code bits. The transmitter then forms a block of code bits with the code bits generated for the packet, determines the modulation scheme to use for the block (e.g., based on a mode/rate selected for the packet), maps the code bits for the block based on the modulation scheme to obtain data symbols, and processes and transmits the block of data symbols to a receiver. The transmitter generates and transmits another block in similar manner until the data packet is decoded correctly or all T blocks have been transmitted. The receiver performs the complementary processing to receive and decode the packet.
Abstract:
Techniques for supporting operation on multiple carriers are described. In an aspect, a carrier indicator (CI) field may be used to support cross-carrier assignment. The CI field may be included in a grant sent on one carrier and may be used to indicate another carrier on which resources are assigned. In one design, a cell may determine a first carrier on which to send a grant to a UE, determine a second carrier on which resources are assigned to the UE, set a CI field of the grant based on the second carrier and a CI mapping for the first carrier, and send the grant to the UE on the first carrier. The UE may receive the grant on the first carrier from the cell and may determine the second carrier on which resources are assigned to the UE based on the CI field of the grant and the CI mapping for the first carrier.
Abstract:
Techniques for transmitting pilot and traffic data are described. In one aspect, a terminal may scramble its pilot with a scrambling sequence generated based on a set of static and dynamic parameters. The static parameter(s) have fixed value for an entire communication session for the terminal. The dynamic parameter(s) have variable value during the communication session. The terminal may generate a scrambling sequence by hashing the set of parameters to obtain a seed and initializing a pseudo-random number (PN) generator with the seed. The terminal may then generate the pilot based on the scrambling sequence. In another aspect, the terminal may use different scrambling sequences for pilot and traffic data. A first scrambling sequence may be generated based on a first set of parameters and used to generate the pilot. A second scrambling sequence may be generated based on a second set of parameters and used to scramble traffic data.
Abstract:
A method and apparatus are provided to manage the assignment transmission resource of forward and reserve link that is assigned to transmitting entity for a period of time. An indication of a gap is provided whenever the transmitting entity is not transmitting actual data packets (e.g. whole or part of intended data or content), yet the transmitting entity is to maintain the assignment of the allocated resource. For example, an erasure signature packet comprising a first data pattern is transmitted on the assigned resource when there is no actual data to transmit on the assigned resource.
Abstract:
Providing fairness-based metrics for managing inter-sector interference of a mobile AN is described herein. By way of example, accumulation of resource utilization messages (RUMs) at a sector of the mobile AN can be based at least in part on a performance metric of that sector as compared with one or more neighboring sectors. In at least one aspect, performance metrics of multiple sectors of the mobile AN can be aggregated and a RUM accumulation rate of each sector is determined based on the aggregated metric. Accumulation rates can further be updated periodically as sector and/or aggregated metrics of the mobile AN change. Accordingly, accumulation and utilization of RUMs is based on inter-sector fairness to optimize overall wireless communication quality of service for the mobile AN.