Abstract:
An apparatus for wireless communication includes data defragmentation logic configured to receive, during a first transmit opportunity, a first data packet from a first device and a second data packet from a second device. The first data packet includes a first data fragment, and the second data packet includes a second data fragment. The apparatus also includes block acknowledgement generation logic configured to generate a block acknowledgement frame including a first block acknowledgement bitmap and a second block acknowledgement bitmap. The first block acknowledgement bitmap indicates at least the first data fragment received from the first device, and the second block acknowledgement bitmap indicates at least the second data fragment received from the second device. The apparatus further includes a wireless interface configured to transmit the block acknowledgement frame to the first device and to the second device.
Abstract:
Systems and methods for wireless communications are disclosed. More particularly, aspects generally relate to techniques for wireless communications by an apparatus comprising determining a first identifier for use in identifying an intended recipient of frames transmitted by members of a peer-to-peer group, generating a first frame having a signal field including the first identifier, and outputting the first frame for transmission to at least one of the members in the peer-to-peer group. Other aspects generally relate to techniques for wireless communications by an apparatus comprising assigning a first identifier to a first peer-to-peer group for use in identifying intended recipients of frames transmitted by members of the first peer-to-peer group, generating a first frame having an indication of the first identifier, and outputting the first frame for transmission to at least one of the members of the first peer-to-peer group.
Abstract:
The present disclosure provides techniques for configuring the utilization of request-to-send/clear-to-send (RTS/CTS) protocol procedures based on varying conditions at the STA. For example, an AP may identify one or more conditions, when satisfied, may trigger the STA to either enable or disable uplink (UL) transmissions associated with a RTS/CTS protocol procedure. In some aspects, an AP may determine a transmit opportunity (TXOP) threshold for an STA and may determine whether to broadcast a message having the TXOP threshold to multiple STAs including the STA or unicast the message to the STA. An STA may receive a message from an AP having a TXOP threshold and may replace, based on an indication in the received message, a current TXOP threshold in the STA with the TXOP threshold in the received message. The STA may transmit an UL RTS frame in response to a determination that a planned TXOP duration satisfies the TXOP threshold.
Abstract:
A method, an apparatus, and a computer-readable medium for wireless communication are provided. The apparatus is configured to determine a communication deferral policy within a BSS associated with the apparatus. The apparatus is configured to receive a message from a second wireless device. The apparatus is configured to determine a message type of the message. The apparatus is configured to determine whether the message is associated with an OBSS based on the determined message type. The apparatus is configured to determine whether to defer communications based on the communication deferral policy, the message type, and whether the message is associated with the OBSS.
Abstract:
The disclosure generally relates to a low-cost and low-power smart parking system, and in particular, to forming a multi-hop wireless mesh network that can be used to estimate an occupancy map at a parking facility. The mesh network may be formed according to messages that are broadcasted from wireless identity transceivers corresponding to vehicles parked at the parking facility and include unique identifiers assigned to the broadcasting wireless identity transceivers and unique identifiers in any messages that the broadcasting wireless identity transceivers receive, whereby an occupancy map at the parking facility can be estimated according to the formed mesh network and a known physical layout associated with the parking facility. Furthermore, the broadcasted messages can be used to provide various other parking functions (e.g., contacting vehicle owners, directing drivers to available spaces, assisting with locating parked vehicles, etc.).
Abstract:
Systems and methods for scalable discovery in contention-based peer-to-peer (P2P) networks are described herein. A method for managing access to a contention-based broadcast channel in a P2P wireless communication network as described herein includes obtaining one or more system timing parameters, the system timing parameters including at least a collision probability tolerance; and configuring a time structure for access to the contention-based broadcast channel using the system timing parameters, wherein the wakeup intervals are allocated between a contention period and a non-contention period and configuring the time structure comprises setting an upper-bound backoff counter value associated with the contention period as a function of at least the collision probability tolerance.
Abstract:
A method of adjusting a carrier sense threshold to avoid hidden nodes during wireless broadcast. The method includes monitoring a load of the peer-to-peer network before broadcasting a message from a node. The method also includes adjusting a carrier sense threshold (CST) based on the load of the peer-to-peer network to avoid broadcast message collisions due to one or more hidden nodes.
Abstract:
In some implementations, a mobile device may receive, from a server, a set of priority lists for localization of the mobile device, where the set of priority lists comprises, for each context of a plurality of contexts, a corresponding prioritized list of localization methods for the mobile device to use, during a journey, for a respective context. The mobile device may determine an applicable context from the plurality of contexts based on a course location of the mobile device along the journey. The mobile device may perform localization method in accordance with a priority list, from the set of priority lists, corresponding to the applicable context.
Abstract:
Systems and techniques are described herein for network organization. For instance, a process can include receiving, from a second sensing apparatus of the self-organizing network, an indication of a first task. The process can further include retrieving a first power profile associated with the first task, determining a current battery level of the at least one battery, predicting a future battery level of the at least one battery based on the current battery level, and the first power profile associated with the first task, and transmitting, to another sensing apparatus, the predicted future battery level.
Abstract:
Methods and apparatus for managing reuse of a wireless medium are provided. One method of managing reuse of a wireless medium includes determining, at an access point, whether to allow reuse of the wireless medium by one or more stations in a basic service set (BSS). The method further includes transmitting, upon determining to allow reuse, an indication that reuse of the wireless medium can be permitted for stations meeting a criteria. The method further includes determining one or more reuse parameters. The method further includes transmitting the one or more reuse parameters.