Abstract:
Systems, methods, and computer-readable media are provided for providing pose estimation in extended reality systems. An example method can include tracking, in a lower-power processing mode using a set of lower-power circuit elements on an integrated circuit, a position and orientation of a computing device during a lower-power processing period, the set of lower-power circuit elements including a static random-access memory (SRAM); suspending, based on a triggering event, the tracking in the lower-power processing mode; initiating a higher-power processing mode for tracking the position and orientation of the computing device during a higher-power processing period; and tracking, in the higher-power processing mode using a set of higher-power circuit elements on the integrated circuit and a dynamic random-access memory (DRAM), the position and orientation of the computing device during the higher-power processing period.
Abstract:
Video encoding and decoding techniques are described in which a predictive image s formed from texture mapping a composite image to a proxy geometry that provides an approximation of a three-dimensional structure of a current image or a previously encoded or decoded image. A residual between the predictive image and the current image is used to encode or decode the current image.
Abstract:
Methods, systems, computer-readable media, and apparatuses for assigning a color class of a defined finite set of colors to at least one sub-region within a test image are presented. A plurality of sub-regions are identified within a test image. A first sub-region color value is determined for a selected first sub-region of the test image. Using the first sub-region color value and a plurality of zero-order probability distributions, a first color class of the defined finite set of colors is determined as a hypothesis color for the first sub-region. A second sub-region color value is determined for a selected second sub-region of the test image. Using the second sub-region color value and a conditional probability distribution conditioned on the hypothesis color for the first sub-region, a second color class of the defined set of colors is determined. The second color class is assigned to the second sub-region.
Abstract:
Disclosed is a method and apparatus for selecting a part of SLAM map information of a first device for transmission to a second device in a collaborative SLAM environment. In one embodiment, the functions implemented include: determining whether a 3D registration transformation between a map of the first device and a map of the second device is available; and transmitting a part of map information of the first device to the second device according to one of a first strategy or a second strategy based on whether or not a 3D registration transformation between the map of the first device and the map of the second device is available.
Abstract:
Disclosed are a system, apparatus, and method for depth and color camera image synchronization. Depth and color camera input images are received or otherwise obtained unsynchronized and without associated creation timestamps. An image of one type is compared with an image of a different type to determine a match for synchronization. Matches may be determined according to edge detection or depth coordinate detection. When a match is determined a synchronized pair is formed for processing within an augmented reality output. Optionally the synchronized pair may be transformed to improve the match between the image pair.
Abstract:
Video encoding and decoding techniques are described in which a predictive image s formed from texture mapping a composite image to a proxy geometry that provides an approximation of a three-dimensional structure of a current image or a previously encoded or decoded image. A residual between the predictive image and the current image is used to encode or decode the current image.
Abstract:
Embodiments disclosed facilitate resource utilization efficiencies in Mobile Stations (MS) during 3D reconstruction. In some embodiments, camera pose information for a first color image captured by a camera on an MS may be obtained and a determination may be made whether to extend or update a first 3-Dimensional (3D) model of an environment being modeled by the MS based, in part, on the first color image and associated camera pose information. The depth sensor, which provides depth information for images captured by the camera, may be disabled, when the first 3D model is not extended or updated.
Abstract:
A source video stream is processed to extract a desired object from the remainder of video stream to produce a segmented video of the object. Additional relevant information, such as the orientation of the source camera for each frame in the resulting segmented video of the object, is also determined and stored. During replay, the segmented video of the object, as well as the source camera orientation are obtained. Using the source camera orientation for each frame of the segmented video of the object, as well as target camera orientation for each frame of a target video stream, a transformation for the segmented video of the object may be produced. The segmented video of the object may be displayed over the target video stream, which may be a live video stream of a scene, using the transformation to spatially register the segmented video to the target video stream.
Abstract:
Techniques are provided for generating three-dimensional models of objects from one or more images or frames. For example, at least one frame of an object in a scene can be obtained. A portion of the object is positioned on a plane in the at least one frame. The plane can be detected in the at least one frame and, based on the detected plane, the object can be segmented from the plane in the at least one frame. A three-dimensional (3D) model of the object can be generated based on segmenting the object from the plane. A refined mesh can be generated for a portion of the 3D model corresponding to the portion of the object positioned on the plane.
Abstract:
This disclosure provides systems, methods, and devices for wireless communication that support enhanced beam management using extended reality (XR) perception data. In a first aspect, a method of wireless communication includes establishing a communication connection between a user equipment (UE) and a serving base station using a current serving beam selected by the UE from a plurality of available beams paired with a serving base station beam. The method further includes obtaining, perception information from one or more extended reality sensors associated with the UE and determining, in response to detection of UE movement, a transpositional representation of the movement using the perception information. The UE may then select a new serving beam in accordance with the transpositional representation. Other aspects and features are also claimed and described.