Abstract:
An integrated circuit assembly includes a first substrate and a second substrate, with active layers formed on the first surfaces of each substrate, and with the second surfaces of each substrate coupled together. A method of fabricating an integrated circuit assembly includes forming active layers on the first surfaces of each of two substrates, and coupling the second surfaces of the substrates together.
Abstract:
An integrated circuit assembly comprises an insulating layer, a semiconductor layer, a handle layer, a metal interconnect layer, and transistors. The insulating layer has a first surface, a second surface, and a hole extending from the first surface to the second surface. The semiconductor layer has a first surface and a second surface, the first surface of the semiconductor layer contacting the first surface of the insulating layer. The handle layer is coupled to the second surface of the semiconductor layer. The metal interconnect layer is coupled to the second surface of the insulating layer, the metal interconnect layer being disposed within the hole in the insulating layer. The transistors are located in the semiconductor layer. The hole in the insulating layer extends to at least the first surface of the semiconductor layer. The metal interconnect layer electrically couples a plurality of the transistors to each other.
Abstract:
In one embodiment, an integrated circuit with a signal-processing region is disclosed. The integrated circuit comprises a silicon-on-insulator die singulated from a silicon-on-insulator wafer. The silicon on insulator die comprises an active layer, an insulator layer, a substrate, and a strengthening layer. The substrate consists of an excavated substrate region, and a support region, the support region is in contact with the insulator layer. The excavated region covers a majority of the signal-processing region of the integrated circuit.