Abstract:
A pipe diagnostic system includes a sensor capsule, measurement circuitry and a controller. The sensor capsule is configured to be coupled to an exterior surface of a pipe and has at least one temperature sensitive element disposed therein. The measurement circuitry is coupled to the sensor capsule and is configured to measure an electrical characteristic of the at least one temperature sensitive element and provide an indication of the measurement. The controller is coupled to the measurement circuitry and is configured to obtain a transmitter reference measurement and employ a heat transfer calculation with the transmitter reference measurement and the indication to generate an estimated process fluid temperature. The controller is further configured to obtain an indication of process fluid temperature and provide a pipe diagnostic indication based on a comparison of the estimated process fluid temperature and the obtained indication of process fluid temperature.
Abstract:
A process fluid temperature calculation system includes a first temperature sensor disposed to measure an external temperature of a process fluid conduit. The process fluid temperature calculation system has a stem portion having a known thermal impedance. A second temperature sensor is spaced from the first temperature sensor by the stem portion. Measurement circuitry is coupled to the first and second temperature sensors. A microprocessor is coupled to the measurement circuitry to receive temperature information from the measurement circuitry and to provide an estimate of temperature of process fluid within the process fluid conduit using a heat flux calculation.
Abstract:
A process temperature transmitter is operable with at least one temperature sensor having a plurality of leads. The temperature transmitter includes measurement circuitry operably coupleable to the at least one temperature sensor to provide an indication of an electrical parameter of the at least one temperature sensor. A controller is coupled to the measurement circuitry to obtain the indication and provide a process temperature output. A current source applies a test current to the plurality of leads simultaneously. Diagnostic circuitry measures a voltage response on each lead in order to provide a diagnostic indication of the temperature sensor.
Abstract:
A process variable transmitter is used to measure a process variable, and, in doing so, dynamically changes the resolution of the A/D converter based upon the measured value of the analog input signal. This can be done by automatically adjusting the configurable resolution gain adjustment based on the value of the analog signal being measured, by normalizing the input signal being measured so that it is centered in an optimal resolution window of the A/D converter, or by adjusting a voltage reference provided to the A/D converter.
Abstract:
A process fluid temperature measurement system is provided. The process fluid temperature measurement system includes a thermowell configured to couple to a process fluid conduit and extend through a wall of the process fluid conduit. The process fluid temperature measurement system also includes a temperature sensor assembly disposed within the thermowell, the temperature sensor assembly including a sensor capsule having at least one temperature sensitive element disposed therein. The temperature sensor assembly also includes a vibration sensor coupled to the sensor capsule, the vibration sensor being configured to produce a vibration signal in response to detected vibration. The process fluid temperature measurement system further includes transmitter circuitry coupled to the vibration sensor and configured to receive the vibration signal and produce an output based on the received vibration signal.
Abstract:
A polymeric fluid sensor includes an inlet configured to receive fluid and an outlet. A polymeric tube is fluidically interposed between the inlet and the outlet and has a first sensing location with a first sidewall thickness and a second sensing location, spaced from the first sensing location, with a second sidewall thickness. A sleeve is disposed about the polymeric tube. The first sidewall thickness is less than the second sidewall thickness and a first sensing element is disposed at the first location and a second sensing element is disposed at the second location. In another example, the first and second sidewall thicknesses are the same and a fluid restriction is disposed within the polymeric tube between the first and second sensing locations.
Abstract:
A process fluid temperature transmitter includes a plurality of terminals, an excitation source, a measurement device, and a controller. The plurality of terminals is couplable to an RTD. The excitation source is operably coupled to the plurality of terminals and is configured to apply an excitation signal to the RTD. The measurement device is coupled to the plurality of terminals and is configured to measure a response of the RTD to the applied excitation signal. The controller is coupled to the excitation source and the measurement device. The controller is configured to perform an RTD resistance measurement by causing the excitation source to apply the excitation signal to the RTD and to cause the measurement device to measure the response of the RTD while the excitation signal is applied to the RTD. The controller is also configured to perform an RTD diagnostic by causing the excitation source to change application of the excitation signal and causing the measurement device to measure an RTD response to the changed excitation signal.
Abstract:
A process fluid temperature measurement system is provided. The process fluid temperature measurement system includes a thermowell configured to couple to a process fluid conduit and extend through a wall of the process fluid conduit. The process fluid temperature measurement system also includes a temperature sensor assembly disposed within the thermowell, the temperature sensor assembly including a sensor capsule having at least one temperature sensitive element disposed therein. The temperature sensor assembly also includes a vibration sensor coupled to the sensor capsule, the vibration sensor being configured to produce a vibration signal in response to detected vibration. The process fluid temperature measurement system further includes transmitter circuitry coupled to the vibration sensor and configured to receive the vibration signal and produce an output based on the received vibration signal.
Abstract:
A process fluid temperature estimation system includes a mounting assembly that is configured to mount the process fluid temperature estimation system to an external surface of a process fluid conduit. A sensor capsule has at least one temperature sensitive element disposed therein. Measurement circuitry is coupled to the sensor capsule and is configured to detect a characteristic of the at least one temperature sensitive element that varies with temperature and provide sensor capsule temperature information. A high temperature spacer has a known thermal conductivity and is configured to be interposed between the external surface of the process fluid conduit and the at least one temperature sensitive element. A controller is coupled to the measurement circuitry and is configured to obtain a reference temperature and employ a heat transfer calculation with the reference temperature, the sensor capsule temperature information and the known thermal conductivity of the high temperature spacer to generate an estimated process fluid temperature output.
Abstract:
A sensor capsule for a heat flux sensor includes a hot end and a cold end. The sensor capsule includes a thermal conductor extending from the hot end toward the cold end, and a plurality of temperature sensors coupled to the thermal conductor at different distances from the hot end.