Abstract:
Methods and apparatus for controlled grasping and cinching or locking of a tissue anchor are provided. In one variation, a tube is provided having a lumen and a resilient member that obstructs the lumen. A grasper may be advanced coaxially through the lumen, such that it reversibly displaces the resilient member and extends beyond the lumen's outlet to engage an element of the tissue anchor. The grasper then may be retracted within the tube, such that the resilient member again obstructs the lumen of the tube. Continued retraction of the grasper may act to cinch the anchor, for example, via interaction between the anchor and the obstructing resilient member. During cinching, a cinching mechanism of the anchor optionally may be positioned at least partially within the tube to enhance lateral stability. Furthermore, feedback indicative of a degree of cinching or locking may be provided during cinching.
Abstract:
Apparatus and methods for manipulating and securing tissue are described herein. In creating tissue folds within the body of a patient, a tissue manipulation assembly may generally have an elongate tubular member, an engagement member slidably disposed through the tubular member and a distal end adapted to engage tissue via a helical member, tissue stabilizing members positioned at the tubular member distal end which are adapted to stabilize tissue therebetween, and a delivery tube pivotable about the tissue stabilizer. The stabilizing members can be adapted to become angled relative to a longitudinal axis of the elongate tubular member. Moreover, one or all the articulation controls and functions can be integrated into a singular handle assembly connectable to the tissue manipulation assembly via a rigid or flexible tubular body.
Abstract:
Methods and apparatus for securing and deploying tissue anchors are described herein. A tissue manipulation assembly is pivotably coupled to the distal end of a tubular member. A reconfigurable launch tube is also pivotably coupled to the tissue manipulation assembly, which may be advanced through a shape-lockable endoscopic device, a conventional endoscope, or directly by itself into a patient. A second tool can be used in combination with the tissue manipulation assembly to engage tissue and manipulate the tissue in conjunction with the tissue manipulation assembly. A deployment assembly is provided for securing engaged tissue via one or more tissue anchors, the deployment assembly also being configured to disengage the anchors endoluminally or laparoscopically.
Abstract:
Apparatus and methods for manipulating and securing tissue are described herein. In creating tissue folds within the body of a patient, a tissue manipulation assembly may generally have an elongate tubular member, an engagement member slidably disposed through the tubular member and a distal end adapted to engage tissue via a helical member, tissue stabilizing members positioned at the tubular member distal end which are adapted to stabilize tissue therebetween, and a delivery tube pivotable about the tissue stabilizer. The stabilizing members can be adapted to become angled relative to a longitudinal axis of the elongate tubular member. Moreover, one or all the articulation controls and functions can be integrated into a singular handle assembly connectable to the tissue manipulation assembly via a rigid or flexible tubular body.
Abstract:
Apparatus and methods are provided for forming a gastrointestinal tissue fold by engaging tissue at a first tissue contact point and moving the first tissue contact point from a position initially distal to, or in line with, a second tissue contact point to a position proximal of the second contact point, thereby forming the tissue fold, and extending an anchor assembly through the tissue fold from a vicinity of the second tissue contact point. Adjustable anchor assemblies; as well as anchor delivery systems, shape-lockable guides and methods for endoluminally performing medical procedures, such as gastric reduction, treatment of gastroesophageal reflux disease, resection of lesions, and treatment of bleeding sites; are also provided.
Abstract:
Apparatus and methods are provided for forming a gastrointestinal tissue fold by engaging tissue at a first tissue contact point and moving the first tissue contact point from a position initially distal to, or in line with, a second tissue contact point to a position proximal of the second contact point, thereby forming the tissue fold, and extending an anchor assembly through the tissue fold from a vicinity of the second tissue contact point. Adjustable anchor assemblies; as well as anchor delivery systems, shape-lockable guides and methods for endoluminally performing medical procedures, such as gastric reduction, treatment of gastroesophageal reflux disease, resection of lesions, and treatment of bleeding sites; are also provided.
Abstract:
Apparatus for manipulating and securing tissue are described herein. In creating tissue folds within the body of a patient, a tissue manipulation assembly may generally have an elongate tubular member, an engagement member slidably disposed through the tubular member and a distal end adapted to engage tissue via a helical member, tissue stabilizing members positioned at the tubular member distal end which are adapted to stabilize tissue therebetween, and a delivery tube pivotable about the tissue stabilizer. The stabilizing members can be adapted to become angled relative to a longitudinal axis of the elongate tubular member. Moreover, one or all the articulation controls and functions can be integrated into a singular handle assembly connectable to the tissue manipulation assembly via a rigid or flexible tubular body.
Abstract:
Devices and methods for forming and securing tissue folds and elongated invaginations in gastric tissue are used as a treatment for obesity. In several embodiments, a plurality of tissue folds is formed along the greater curvature of the stomach using laparoscopic tissue anchor deployment devices. Additional embodiments include various combinations of tissue folds, elongated invaginations, and other reconfigurations of stomach tissue using laparoscopic devices or laparoscopic devices in combination with endoscopic devices.
Abstract:
Methods and apparatus for securing and deploying tissue anchors are described herein. A tissue manipulation assembly is pivotably coupled to the distal end of a tubular member. A reconfigurable launch tube is also pivotably coupled to the tissue manipulation assembly, which may be advanced through a shape-lockable endoscopic device, a conventional endoscope, or directly by itself into a patient. A second tool can be used in combination with the tissue manipulation assembly to engage tissue and manipulate the tissue in conjunction with the tissue manipulation assembly. A deployment assembly is provided for securing engaged tissue via one or more tissue anchors, the deployment assembly also being configured to disengage the anchors endoluminally or laparoscopically by applying thermal energy through at least one suture cutting element disposed along the deployment assembly.
Abstract:
Apparatus and methods are provided for forming a gastrointestinal tissue fold by engaging tissue at a first tissue contact point, moving the first tissue contact point from a position initially distal to a second tissue contact point to a position proximal of the second contact point to form a tissue fold, and extending an anchor assembly through the tissue fold near the second tissue contact point.