摘要:
A method and apparatus for controlling the removal of material from a semiconductor substrate in an integrated circuit fabrication process is disclosed. The method and apparatus utilize a light source or charged particle beam (electron or ion beam) to induce a current in at least one P-N junction formed in the semiconductor substrate. The induced current is monitored during the removal of material and the process is stopped or endpointed in response to the induced current making a predetermined transition.
摘要:
A capacitor structure is formed on a substrate member having one or more via holes therein. Metallization portions within the via holes of the substrate member form part of the plates of the capacitor.
摘要:
A method and an apparatus for editing an integrated circuit. In one embodiment, an integrated circuit substrate is placed into a laser chemical vapor deposition (LCVD) tool and a conductive metal film is deposited onto the integrated circuit substrate over an area of interest. The integrated circuit substrate is subsequently placed into a focused ion beam (FIB) tool where an optional FIB cleaning step is performed on the conductive element deposited by the LCVD tool to help ensure that a good electrical contact can be made. The FIB tool is also used to introduce any desired cuts into signal lines of the integrated circuit to complete edits. The FIB is also used to remove passivation over integrated circuit nodes of interest to expose buried metal lines for subsequent coupling to the conductive element deposited with the LCVD tool. The FIB tool is then used to deposit a focused ion beam chemical vapor deposition (FIBCVD) conductive element between the exposed integrated circuit nodes of interest and the conductive element deposited with the LCVD tool. As a result, a new conductive element between the nodes of interest is formed through the conductive elements formed by both the LCVD and FIB tools.
摘要:
A fiducial for aligning an integrated circuit die. In one embodiment, the fiducial is configured to be exposed by laser chemical etching through a silicon substrate through the back side of a C4 packaged integrated circuit die. The presently described fiducial includes floating diffusion regions disposed in the substrate. An oxide layer free of metal contacts is disposed over the diffusion regions within the fiducial region of the integrated circuit. A metal pattern layer is disposed beneath the oxide layer to provide alignment information. The metal pattern layer is configured to be visible through the oxide layer after the silicon substrate has been removed from the fiducial region. A light block is disposed between the metal pattern layer and an underlying epoxy underfill layer to minimize the risk of an excessive amount of light from being exposed to the underlying epoxy layer, which minimizes the risk of the epoxy layer from damaging the integrated circuit from excessive light exposure. Since the presently described fiducial does not include any contacts in the oxide layer, the additional step of utilizing a focus ion beam mills no longer necessary and the presently described fiducial therefore only needs to be etched with a laser chemical etcher to be exposed.
摘要:
A method and an apparatus for endpoint determination when milling an integrated circuit disposed in a substrate. In one embodiment, the substrate is charged to a first polarity while the well regions and active diffusion regions of the integrated circuit are charged to another polarity thus resulting in an electrical bias at the P-N junctions in the substrate. By powering up the integrated circuit in this fashion during milling, endpoint detection can be accurately determined by using a voltage contrast mechanism such as the imaging detector of a focused ion beam (FIB) milling tool. A diffusion boundary can also be determined in accordance with the teachings of the invention by the use of the stage current monitor of the FIB milling tool. The diffusion boundary is determined in accordance with the teachings of the present invention by a change in contrast as detected by the imaging detector of the FIB milling tool or by a change in the stage current as measured by the stage current monitor of the FIB milling tool. By accurately determining when a diffusion boundary is reached, the present invention reduces the risk of inadvertently destroying diffusion regions when exposing features in an integrated circuit during debug.
摘要:
A fiducial for aligning an integrated circuit die. In one embodiment, the fiducial is configured to be exposed by laser chemical etching through a silicon substrate through the back side of a C4 packaged integrated circuit die. The presently described fiducial includes floating diffusion regions disposed in the substrate. An oxide layer free of metal contacts is disposed over the diffusion regions within the fiducial region of the integrated circuit. A metal pattern layer is disposed beneath the oxide layer to provide alignment information. The metal pattern layer is configured to be visible through the oxide layer after the silicon substrate has been removed from the fiducial region. A light block is disposed between the metal pattern layer and an underlying epoxy underfill layer to minimize the risk of an excessive amount of light from being exposed to the underlying epoxy layer, which minimizes the risk of the epoxy layer from damaging the integrated circuit from excessive light exposure. Since the presently described fiducial does not include any contacts in the oxide layer, the additional step of utilizing a focus ion beam mill is no longer necessary and the presently described fiducial therefore only needs to be etched with a laser chemical etcher to be exposed.
摘要:
In general, in one aspect, an apparatus receives pixels associated with an image destined for an external display and determines a reduced backlight brightness for the external display and corresponding changes to the pixels to approximate overall quality of the image with current backlight brightness. Backlight commands are generated for the reduced backlight brightness and the pixels are enhanced to correspond to the reduced backlight brightness. The enhanced pixels and the backlight commands are transmitted to the external display via a display interface that supports backlight control. The display interface may be a wireless interface or a wired (cabled) interface (e.g., display port (DP), high definition multimedia interface (HDMI), video graphics array (VGA)). The functionality of the apparatus is included in a computing device so that backlight brightness reductions and corresponding pixel changes can be made taking into account policies of the computing device and user preferences.
摘要:
A projection display system may use a microdisplay that has pixels that are dedicated to only one narrow wavelength band. A suitable optical filter for each primary display color may be formed from a small number of optical layers, taking advantage of both the rounded profile and narrow range of the emission peaks in a typical projection light source. Thus, groups of pixels may be dedicated to each wavelength band of the display. A planarization layer may be coated on dichroic filter elements that are applied to a cover glass to provide the dedicated wavelengths for each pixel. The planarization layer may smooth out any surface irregularities resulting from the deposition of the dichroic layers on the cover glass.
摘要:
A method and apparatus for fabrication of passivated microfluidic structures is disclosed. The method includes providing a substrate having a microfluidic structure formed therein. The microfluidic structure is embedded by an embedding layer. The method further includes passivating the embedded microfluidic structure by locally heating the microfluidic structure surface in a reactive atmosphere, wherein the passivated microfluidic structure is suitable for transporting a fluid.
摘要:
A method of fabricating LCOS devices and testing them at the wafer-scale to identify known-bad dice, to facilitate completing fabrication of only known-good dice. A wafer-scale transparent electrode glass is temporarily placed over the wafer, and liquid crystal material is injected into the LCOS device cavities through fill holes extending through the wafer. After removing the glass and separating the wafer into dice, only the good dice have their die-scale glass attached, liquid crystal material re-injected, solder bumps affixed, and substrate attached.