Abstract:
The invention relates in a first aspect to an azadibenzocyclooctyne derivative according to formula (I) or a salt thereof having specific substituents at the benzo rings of the DIBAC structure and having specific substituents connected to the nitrogen atom of the DIBAC structure. A second aspect of the invention is directed to a conjugate of formula (II), wherein a substituent R6 is connected to the N atom of the 8 membered ring of the DIBAC structure via a linker structure —C(═O)-[L]n-Z—. A third aspect of the invention relates to a method for the modification of a target molecule, wherein a conjugate according to the second aspect is reacted with a target molecule comprising a 1,3-dipole group or a 1,3-(hetero)diene group. In a fourth aspect, the invention is directed to the use of the conjugate according to the second aspect for bioorthogonal labeling and/or modification of a target molecule. A fifth aspect of the invention relates to a modified target molecule comprising the reaction product of a conjugate according to the second aspect and a target molecule comprising a 1,3-dipole group or a 1,3-(hetero)diene group, obtained or obtainable from the method of the third aspect. In a sixth aspect, the invention is related to a kit comprising a modified target molecule according to the fifth aspect as detector reagent and a suitable capture reagent.
Abstract:
The present description relates to a method for binding to a target molecule having an aldehyde compound derived from N-(2-aminoethyl)pyrrole, which compound also has a moiety of interest, to compounds (conjugates) obtained by this method, having both the target molecule and the moiety of interest and to novel substances derived from N-(2-aminoethyl)pyrrole. In one embodiment, the compound has the formula of Formula II wherein R1, R2 and R3 independently are H, substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl, wherein R4, R5, R6, R7 and R8 independently are H, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, or -LM, wherein L is absent or is a linker and M is a moiety of interest selected from a nucleotide, an oligonucleotide, a peptide, a label, a cytotoxic agent, a partner of a binding pair and a functional group, wherein two of R4, R5, R6, R7, and R8 optionally are linked to form a substituted or unsubstituted cycloalkyl or a substituted or unsubstituted heterocycloalkyl, and T is a target molecule selected from the group consisting of a solid phase, a polypeptide, a protein, a carbohydrate, a nucleotide and a nucleic acid, with the proviso that at least one of R4, R5, R6, R7 or R8 is -LM.
Abstract:
The present invention relates to novel iridium-based Ir(III) luminescent complexes, conjugates comprising these complexes as a label and their application, e.g. in the electrochemiluminescence based detection of an analyte.
Abstract:
The present invention relates to novel iridium-based Ir(III) luminescent complexes, conjugates comprising these complexes as a label and their application, e.g. in the electrochemiluminescence based detection of an analyte.
Abstract:
The present invention relates to a new class of nucleic acid tagging molecules which are essentially free of homopolymer stretches. Such tagging molecules are helpful for effectively tagging a plurality of individual target molecules and detecting said tags with a high degree of accuracy.
Abstract:
The present disclosure relates to a set of at least 100 single-stranded oligonucleotide probes directed against (or complementary to) portions of a genomic target sequence of interest. The present disclosure also relates to a method of detecting a genomic target sequence of interest using the set of oligonucleotide probes and a method of generating the set of oligonucleotide probes. Further, the present disclosure relates to a kit comprising the set of oligonucleotide probes and at least one further component.