Abstract:
A method of fabricating a semiconductor transistor device is provided. The fabrication method begins by forming a gate structure overlying a layer of semiconductor material, such as silicon. Then, spacers are formed about the sidewalls of the gate structure. Next, ions of an amorphizing species are implanted into the semiconductor material at a tilted angle toward the gate structure. The gate structure and the spacers are used as an ion implantation mask during this step. The ions form amorphized regions in the semiconductor material. Thereafter, the amorphized regions are selectively removed, resulting in corresponding recesses in the semiconductor material. In addition, the recesses are filled with stress inducing semiconductor material, and fabrication of the semiconductor transistor device is completed.
Abstract:
Methods for protecting gate stacks during fabrication of semiconductor devices and semiconductor devices fabricated from such methods are provided. Methods for fabricating a semiconductor device include providing a semiconductor substrate having an active region and a shallow trench isolation (STI) region. Epitaxial layer is formed on the active region to define a lateral overhang portion in a divot at the active region/STI region interface. A gate stack is formed having a first gate stack-forming layer overlying the semiconductor substrate. First gate stack-forming layer includes a non-conformal layer of metal gate-forming material which is directionally deposited to form a thinned break portion just below the lateral overhang portion. After the step of forming the gate stack, a first portion of the non-conformal layer is in the gate stack and a second portion is exposed. The thinned break portion at least partially isolates the first and second portions during subsequent etch chemistries.
Abstract:
Methods for protecting gate stacks during fabrication of semiconductor devices and semiconductor devices fabricated from such methods are provided. Methods for fabricating a semiconductor device include providing a semiconductor substrate having an active region and a shallow trench isolation (STI) region. Epitaxial layer is formed on the active region to define a lateral overhang portion in a divot at the active region/STI region interface. A gate stack is formed having a first gate stack-forming layer overlying the semiconductor substrate. First gate stack-forming layer includes a non-conformal layer of metal gate-forming material which is directionally deposited to form a thinned break portion just below the lateral overhang portion. After the step of forming the gate stack, a first portion of the non-conformal layer is in the gate stack and a second portion is exposed. The thinned break portion at least partially isolates the first and second portions during subsequent etch chemistries.
Abstract:
Methods for forming a semiconductor device comprising a silicon-comprising substrate are provided. One exemplary method comprises depositing a polysilicon layer overlying the silicon-comprising substrate, amorphizing the polysilicon layer, etching the amorphized polysilicon layer to form a gate electrode, depositing a stress-inducing layer overlying the gate electrode, annealing the silicon-comprising substrate to recrystallize the gate electrode, removing the stress-inducing layer, etching recesses into the substrate using the gate electrode as an etch mask, and epitaxially growing impurity-doped, silicon-comprising regions in the recesses.
Abstract:
A method of fabricating a semiconductor transistor device is provided. The fabrication method begins by forming a gate structure overlying a layer of semiconductor material, such as silicon. Then, spacers are formed about the sidewalls of the gate structure. Next, ions of an amorphizing species are implanted into the semiconductor material at a tilted angle toward the gate structure. The gate structure and the spacers are used as an ion implantation mask during this step. The ions form amorphized regions in the semiconductor material. Thereafter, the amorphized regions are selectively removed, resulting in corresponding recesses in the semiconductor material. In addition, the recesses are filled with stress inducing semiconductor material, and fabrication of the semiconductor transistor device is completed.
Abstract:
A method for fabricating a MOSFET (e.g., a PMOS FET) includes providing a semiconductor substrate having surface characterized by a (110) surface orientation or (110) sidewall surfaces, forming a gate structure on the surface, and forming a source extension and a drain extension in the semiconductor substrate asymmetrically positioned with respect to the gate structure. An ion implantation process is performed at a non-zero tilt angle. At least one spacer and the gate electrode mask a portion of the surface during the ion implantation process such that the source extension and drain extension are asymmetrically positioned with respect to the gate structure by an asymmetry measure.
Abstract:
A method for fabricating a MOSFET (e.g., a PMOS FET) includes providing a semiconductor substrate having surface characterized by a (110) surface orientation or (110) sidewall surfaces, forming a gate structure on the surface, and forming a source extension and a drain extension in the semiconductor substrate asymmetrically positioned with respect to the gate structure. An ion implantation process is performed at a non-zero tilt angle. At least one spacer and the gate electrode mask a portion of the surface during the ion implantation process such that the source extension and drain extension are asymmetrically positioned with respect to the gate structure by an asymmetry measure.