Abstract:
Polycarbonate articles having improved properties due to their substantially cross-linked nature are disclosed. The substantially cross-linked articles are formed by forming a product from a polymeric composition comprising a cross-linkable polycarbonate resin containing a photoactive group derived from a benzophenone, and exposing the formed product to an effective dosage of ultraviolet radiation to cause substantial cross-linking throughout the article. Such cross-linking can also be used to obtain films having good scratch resistance properties.
Abstract:
Methods of making articles using additive manufacturing processes are disclosed. The article is built up from a multitude of layers. At least one layer includes a modeling material comprising a cross-linkable polycarbonate resin containing a photoactive group derived from a benzophenone. When exposed to an effective dosage of ultraviolet radiation, the modeling material crosslinks. This improves various properties of the final article.
Abstract:
Disclosed herein are processes for preparing articles from compositions including a cross-linked polycarbonate. The cross-linked polycarbonate may be derived from a polycarbonate having about 0.5 mol % to about 5 mol % endcap groups derived from a monohydroxybenzophenone. The article is molded, then exposed to UV radiation. A plaque including the composition can achieve a UL94 5VA rating.
Abstract:
Disclosed herein are compositions including a cross-linked polycarbonate. The cross-linked polycarbonate may be derived from a polycarbonate having about 0.5 mol % to about 5 mol % endcap groups derived from a monohydroxybenzophenone. A plaque including the composition can achieve a UL94 5VA rating. Also disclosed herein are articles including the compositions, methods of using the compositions, and processes for preparing the compositions.
Abstract:
Polycarbonate blend compositions are disclosed. The compositions include at least one polycarbonate useful for high heat applications. The compositions include at least one poly(aliphatic ester)-polycarbonate. The compositions can include one or more additional polymers. The compositions can include one or more additives. The compositions can be used to prepare articles of manufacture.
Abstract:
Polycarbonate articles having improved properties due to their substantially cross-linked nature are disclosed. The substantially cross-linked articles are formed by forming a product from a polymeric composition comprising a cross-linkable polycarbonate resin containing a photoactive group derived from a benzophenone, and exposing the formed product to an effective dosage of ultraviolet radiation to cause substantial cross-linking throughout the article. Such cross-linking can also be used to obtain films having good scratch resistance properties.
Abstract:
A thermoplastic composition comprises: 35 to 45 weight percent of a branched, end capped polycarbonate, 55 to 70 weight percent of a poly(aliphatic ester-carbonate) having a weight average molecular weight of 15,000 to 25,000, a non-flourinated sulfonate salt flame retardant and a polysiloxane. Weight percent is based on the combined weight of the branched, end capped polycarbonate and poly(aliphatic ester-carbonate).
Abstract:
Polymeric blends having improved flame retardance properties and good ductility at low temperatures are disclosed. The blend is formed from (A) a photoactive additive that is a cross-linkable polycarbonate resin containing a photoactive group derived from a dihydroxybenzophenone; and (B) a polymer resin which is different from the photoactive additive. The additive can be a compound, oligomer, or polymer. When exposed to ultraviolet light, crosslinking will occur between the photoactive additive and the polymer resin, enhancing the chemical resistance and flame retardance while maintaining ductility.
Abstract:
A polycarbonate containing composition comprising a peak melt viscosity of at least 8,000 poise when measured using a parallel plate melt rheology test at a heating rate of 10° C./min at a temperature of between about 350° C. to about 450° C., and wherein a molded article of the composition has a UL 94 V0 rating at a thickness of 1.0 mm, 1.5 mm, 2.0 mm, or between 1.0 mm and 2.0 mm is disclosed.
Abstract:
Crosslinkable polycarbonate resins having improved properties are disclosed. The crosslinkable polycarbonate resins are formed from a reaction of at least a benzophenone, a first dihydroxy chain extender, and a carbonate precursor, and may include a second dihydroxy chain extender as well.