Abstract:
Crosslinkable polycarbonate resins having improved properties are disclosed. The crosslinkable polycarbonate resins are formed from a reaction of at least a benzophenone, a first dihydroxy chain extender, and a carbonate precursor, and may include a second dihydroxy chain extender as well.
Abstract:
Disclosed herein is a composition comprising: a flame retardant comprising a sulfonate salt and three polycarbonates. The first polycarbonate has a branching level of greater than or equal to 2%, a weight average molecular weight of 20,000 g/mole to 55,000 g/mole and a peak melt viscosity of greater than or equal to 25,000 poise. The second polycarbonate has a glass transition temperature greater than or equal to 170° C. The third polycarbonate has a branching level of 0 to less than 2% and a molecular weight of 17,000 to 40,000 g/mol. The composition has a heat distortion temperature greater than or equal to 145° C., ductility greater than or equal to 90% at 23° C., multi-axial impact greater than or equal to 50 Joules per meter (J/m) at 23° C., and a molded article of the composition has a UL 94 V0 rating at a thickness of 1.5 mm.
Abstract:
Polymeric blends having improved flame retardance properties and good ductility at low temperatures are disclosed. The blend is formed from (A) a photoactive additive containing a photoactive group derived from a monofunctional benzophenone; and (B) a polymer resin which is different from the photoactive additive. The additive can be a compound, oligomer, or polymer. When exposed to ultraviolet light, crosslinking will occur between the photoactive additive and the polymer resin, enhancing the chemical resistance and flame retardance while maintaining ductility.
Abstract:
Processes for increasing the chemical resistance of a surface of a formed article are disclosed. The formed article is produced from a polymeric composition comprising a photoactive additive containing photoactive groups derived from a monofunctional benzophenone. The surface of the formed article is then exposed to ultraviolet light to cause crosslinking of the photoactive additive and produce a crosslinked surface. The crosslinking enhances the chemical resistance of the surface. Various means for controlling the depth of the crosslinking are also discussed.
Abstract:
Articles having improved flame retardance and chemical resistance properties can be made from blends containing a cross-linkable polycarbonate resin having repeating units derived from a dihydroxybenzophenone. Predictive equations can be used to relate properties of the blend and the polycarbonate resin to the fmal properties of the article, and permit design of articles with desired combinations of properties.
Abstract:
Disclosed herein are compositions including a cross-linked polycarbonate. The cross-linked polycarbonate may be derived from a polycarbonate having about 0.5 mol % to about 5 mol % endcap groups derived from a monohydroxybenzophenone. A plaque including the composition can achieve a UL94 5VA rating. Also disclosed herein are articles including the compositions, methods of using the compositions, and processes for preparing the compositions.
Abstract:
Different interfacial processes for producing photoactive additives are disclosed. Generally, the photoactive additives are formed from a photoactive moiety, a first linker moiety, and a diol chain extender. The resulting additives can be crosslinked with other polymers upon exposure to UV radiation.
Abstract:
Polymeric blends having improved flame retardance properties and good ductility at low temperatures are disclosed. The blend is formed from (A) a photoactive additive containing a photoactive group derived from a monofunctional benzophenone; and (B) a polymer resin which is different from the photoactive additive. The additive can be a compound, oligomer, or polymer. When exposed to ultraviolet light, crosslinking will occur between the photoactive additive and the polymer resin, enhancing the chemical resistance and flame retardance while maintaining ductility.
Abstract:
Polycarbonate blend compositions are disclosed. The compositions include at least one polycarbonate useful for high heat applications. The compositions include at least one poly(aliphatic ester)-polycarbonate. The compositions can include one or more additional polymers. The compositions can include one or more additives. The compositions can be used to prepare articles of manufacture, and in particular, automotive bezels.
Abstract:
Thin walled products having good scratch resistance are disclosed, as are processes for making such products (e.g. films, sheets, and thin walled articles). The product includes a thin layer formed from (A) a cross-linkable polycarbonate resin having endcaps derived from a monohydroxybenzophenone; and (B) if desired, a base polymeric resin. When exposed to ultraviolet light, crosslinking will occur in the layer with the cross-linkable polycarbonate resin, enhancing the scratch resistance properties of the thin layer and the overall product.