Abstract:
An electronic component includes: a plurality of multilayer capacitors stacked in multiple rows and columns and each having external electrodes on both ends thereof in a first direction; and a board including a body and a connection portion. The connection portion includes: a plurality of positive electrode land patterns; a plurality of negative electrode land patterns; positive and negative electrode terminal patterns formed on a lower surface of the body to be spaced apart from each other in the first direction; a positive electrode connection portion connecting the plurality of positive electrode land patterns to the positive electrode terminal pattern; and a negative electrode connection portion connecting the plurality of negative electrode land patterns to the negative electrode terminal pattern.
Abstract:
A multilayer ceramic electronic component includes a ceramic body including dielectric layers and first and second internal electrodes, first and second external electrodes disposed on first and second external surfaces of the ceramic body, and an interposer including an insulating body and first and second terminal electrodes. (B1+B2)/2 is greater than or equal to 10 micrometers (μm) and less than C/2, and C is greater than (B1+B2) and less than or equal to 80 μm, in which B1 is a thickness of an upper portion, of each of the first and second terminal electrodes, disposed above the insulating body, B2 is a thickness of a lower portion, of each of the first and second terminal electrodes, disposed below the insulating body, and C is a thickness of the interposer.
Abstract:
A composite electronic component includes a composite body in which a capacitor and an inductor are coupled to each other, the capacitor including a ceramic body including a plurality of dielectric layers and first and second internal electrodes, and the inductor including a magnetic body including a coil part. An input terminal is disposed on a first side surface of the composite body and is connected to the coil part. An output terminal includes a first output terminal disposed on the first side surface of the composite body and connected to the coil part and a second output terminal disposed on a first end surface of the composite body and connected to the first internal electrodes. A ground terminal is disposed on a second end surface of the composite body and is connected to the second internal electrodes. The capacitor is coupled to a side surface of the inductor.
Abstract:
There are provided a multilayer electronic component and a method of manufacturing the same. More particularly, there are provided a multilayer electronic component capable of maintaining high inductance at a high frequency due to excellent magnetic properties and having excellent DC bias properties and a dense fine structure to thereby improve strength, and a method of manufacturing the same.
Abstract:
A multilayer capacitor includes a capacitor body including a dielectric layer and first and second internal electrodes; first and second external electrodes; and an insulator disposed on a first surface of the capacitor body. The capacitor body includes an active region in which first and second internal electrodes overlap each other in a first direction, and upper and lower covers disposed above and below the active region in the first direction. A length of the active region in the second direction is defined as ‘La’, a length of one margin of the capacitor body in the second direction is defined as ‘Lm’, a height of the active region in the first direction is defined as ‘Ta’, a thickness of the lower cover of the capacitor body is defined as ‘Tc’, and a thickness of the insulator is defined as ‘Te’. A relative displacement index, ((La/Lm)−(Ta/Tc))/Te)2, ranges from 0.003 to 0.055.
Abstract:
A composite electronic component includes a composite body that includes a multilayer ceramic capacitor and a ceramic chip coupled to each other. The multilayer ceramic capacitor includes a first ceramic body in which a plurality of dielectric layers and internal electrodes disposed to face each other with respective dielectric layers interposed therebetween are stacked, and first and second external electrodes are disposed on both end portions of the first ceramic body. The ceramic chip is disposed on a lower portion of the multilayer ceramic capacitor and includes a second ceramic body and first and second terminal electrodes disposed on both end portions of the second ceramic body and connected to the first and second external electrodes, respectively. A plurality of electrodes are disposed in the second ceramic body.
Abstract:
A composite electronic component includes: a composite body including a multilayer ceramic capacitor coupled to a ceramic chip, the multilayer ceramic capacitor including a first ceramic body in which a plurality of dielectric layers and internal electrodes disposed to face each other with each of the dielectric layers interposed therebetween are stacked and first and second external electrodes disposed on opposite end portions of the first ceramic body in a length direction, respectively, and the ceramic chip including a second ceramic body including ceramic and first and second terminal electrodes, wherein a ratio of a length of the ceramic chip to a length of the multilayer ceramic capacitor is 0.7 to 1.0, and a ratio of a sum of a length of the first terminal electrode and a length of the second terminal electrode to the length of the ceramic chip is 0.3 to 0.6.
Abstract:
An electronic component includes: a multilayer ceramic capacitor including a capacitor body and a pair of external electrodes, and an interposer including an interposer body having grooves and a pair of external terminals. Each of the external terminals includes a bonding portion, a mounting portion and a connection portion; and ΔL=|A-A′|/2 in which A is a distance from one end portion of the interposer in a length direction to one end portion of the multilayer ceramic capacitor in the length direction, A′ is a distance from the other end portion of the interposer in the length direction to the other end portion of the multilayer ceramic capacitor in the length direction, and ΔL is an offset between the multilayer ceramic capacitor and the interposer in the length direction, and ΔL/L≤0.100 in which L is a length of the multilayer ceramic capacitor.
Abstract:
An electronic component includes a multilayer capacitor including a capacitor body, and an external electrode disposed on an external surface of the capacitor body, an interposer including an interposer body, and an external terminals disposed on an external surface of the interposer body, and an encapsulation portion disposed to cover the multilayer capacitor. The external terminal includes a bonding portion disposed on a first surface of the interposer body to be electrically connected to the external electrode, a mounting portion disposed on a second surface of the interposer opposing the first surface, and a connection portion disposed on an end surface of the interposer to electrically connect the bonding portion to the mounting portion. A thickness of the encapsulation portion is within a range from 0.001 to 0.01 of a length of the electronic component.
Abstract:
A composite electronic component includes: a body part including a dielectric portion; first and second external electrodes disposed on outer surfaces of the body part; a plurality of first and second electrodes disposed inside of the dielectric portion, and electrically connected to the first and second external electrodes, respectively; third and fourth electrodes disposed on an upper portion of the dielectric portion, and electrically connected to the first and second external electrodes, respectively; a gap provided between the third and fourth electrodes; a groove disposed below the gap; and an electrostatic discharge (ESD) layer disposed in the gap.