Abstract:
Color separation devices, and image sensors including the color separation devices and color filters, include at least two transparent bars that face each other with a gap therebetween. Mutually-facing surfaces of the at least two transparent bars are separated from each other by the gap such that the at least two transparent bars allow diffraction of visible light passing therebetween. The at least two transparent bars have a refractive index greater than a refractive index of a surrounding medium.
Abstract:
A color separation device changes a light path according to the wavelengths of incident light and an image sensor has improved light utilization efficiency by using the color separation device. The color separation device may include a first element having a first refractive index that varies according to wavelengths of light along a first refractive index distribution curve, and a second element having a second refractive index that varies according to wavelengths of light along a second refractive index distribution curve, the second refractive index distribution curve being different from the first refractive index distribution curve. The color separation device may be manufactured by simply joining two elements, namely, the first and second elements, together and thus may be more easily manufactured and perform more effective color separation.
Abstract:
A color filter array may include a plurality of color filters arranged two-dimensionally and configured to allow light of different wavelengths to pass therethrough. Each of the plurality of color filters includes at least one Mie resonance particle and a transparent dielectric surrounding the at least one Mie resonance particle.
Abstract:
An image sensor is provided. The image sensor may include; an optical detection device layer including a plurality of optical detection devices; a filter array layer including a plurality of color filters and at least one infrared filter, and disposed on the optical detection device layer; and a plurality of beam splitters disposed in a plurality of pixels, the plurality of pixels being in contact with an infrared ray pixel including the at least one infrared ray color filter, and that are configured to change a direction of an infrared ray component of incident light towards the infrared ray pixel.
Abstract:
A spectral detector includes a grating panel including a first grating pattern having a first period, a second grating pattern having a second period that is different from the first period, and a light exit surface through light exits the grating panel, and an optical measurement panel arranged to face the light exit surface of the grating panel, and configured to measure a change in intensity of first light passing through the first grating pattern according to a propagation distance of the first light, and to measure a change in intensity of second light passing through the second grating pattern according to a propagation distance of the second light.
Abstract:
An image sensor, and an apparatus and method of acquiring an image by using the image sensor are provided. The image sensor includes a color filter having an array of a plurality of types of color filter elements, where each of the color filter elements transmits visible light in a certain wavelength band and blocks visible light outside the certain wavelength band; a photoelectric conversion cell array that detects light that has been transmitted through the color filter; and a modulator, disposed on the photoelectric conversion cell array, which changes a rate of light transmitted to the photoelectric conversion cell array based on an applied voltage.
Abstract:
Provided is a tunable electro-optic filter including a reflective structure including a first reflective layer including a first pattern layer having a first meta-surface structure disposed on a first side of the liquid crystal layer and a second reflective layer including a second pattern layer having a second meta-surface structure disposed on a second side of the liquid crystal layer. Each of the first meta-surface structure and the second meta-surface structure includes multiple dielectric materials which are alternately stacked, and a thickness of each dielectric material gradually increases. Alternately, the tunable electro-optic filter may include a pattern layer having a meta-surface structure disposed on at least a side of the liquid crystal layer.
Abstract:
An image sensor includes a pixel array including a first pixel row, in which a plurality of first pixels and a plurality of second pixels are alternately arranged, and a second pixel row, in which a plurality of second pixels and a plurality of third pixels are alternately arranged; first color separation elements configured to allow light having a second wavelength band, among incident light, to pass therethrough and travel in a downward direction, and to allow a mixture of light having a first wavelength band and light having a third wavelength band, among the incident light, to pass therethrough and travel in a lateral direction; and first color filters on at least a portion of the plurality of first pixels, the first color filters being configured to transmit only the light having the first wavelength band.
Abstract:
A light-field camera includes a main lens configured to form an image of an object, a lens configured to form, on a curved surface, additional images based on the image of the object, and an image sensor configured to function as a curved image sensor and thereby sense the additional images, at least one of the lens and the image sensor including a flat element.
Abstract:
A thermal radiation sensor may include a thermal absorption layer, an optical resonator surrounding the thermal absorption layer, and a plasmonic absorber provided on the thermal absorption layer, and thus, the thermal radiation sensor may have high sensitivity and may be miniaturized.