Abstract:
A color filter array may include a plurality of color filters arranged two-dimensionally and configured to allow light of different wavelengths to pass therethrough. Each of the plurality of color filters includes at least one Mie resonance particle and a transparent dielectric surrounding the at least one Mie resonance particle.
Abstract:
A stacked image sensor includes a first photoelectric conversion layer including a plurality of first photoelectric conversion regions; a second photoelectric conversion layer disposed on the first photoelectric conversion layer, and including a plurality of second photoelectric conversion regions; and a plurality of color filters disposed on the plurality of second photoelectric conversion regions, wherein at least one of the plurality of first photoelectric conversion regions includes a plurality of third photoelectric conversion regions that perform auto-focusing.
Abstract:
An image sensor includes a pixel array having a Bayer pattern structure including a first pixel row in which first pixels and second pixels are alternately provided and a second pixel row in which additional ones of the second pixels and third pixels are alternately provided, a first element to control light of a first wavelength band to travel in directions toward left and right sides of the first element and to control light of a second wavelength band of the incident light to travel in a direction directly under the first element, and a second element to control light of a third wavelength band to travel in the directions toward the left and right sides of the second element and to control the light of the second wavelength band to travel in a direction directly under the second element.
Abstract:
An image sensor includes a first pixel row including a plurality of first pixels configured to sense first wavelength light, the first wavelength light having a first wavelength, a second pixel row adjacent to the first pixel row, the second pixel row including a plurality of second pixels configured to sense second wavelength light and a plurality of third pixels configured to sense third wavelength light, the plurality of second pixels and the plurality of third pixels being alternately arranged, the second wavelength light having a second wavelength and the third wavelength light having a third wavelength and a plurality of first color separation elements in the plurality of second pixels, respectively, the plurality of separation elements configured to change a spectrum distribution of incident light.
Abstract:
A color filter array may include a plurality of color filters arranged two-dimensionally and configured to allow light of different wavelengths to pass therethrough. Each of the plurality of color filters includes at least one Mie resonance particle and a transparent dielectric surrounding the at least one Mie resonance particle.
Abstract:
Color separation devices, and image sensors including the color separation devices and color filters, include at least two transparent bars that face each other with a gap therebetween. Mutually-facing surfaces of the at least two transparent bars are separated from each other by the gap such that the at least two transparent bars allow diffraction of visible light passing therebetween. The at least two transparent bars have a refractive index greater than a refractive index of a surrounding medium.
Abstract:
A varifocal lens includes a first phase plate and a second phase plate which are rotatable relative to each other about an optical axis. The first phase plate includes a plurality of first phase conversion elements, the second phase plate includes a plurality of second phase conversion elements, and the plurality of first phase conversion elements and the plurality of second phase conversion elements are arranged so that light transmitted through the first phase plate and the second phase plate is focused on different positions on the optical axis depending on a relative rotational displacement between the first phase plate and the second phase plate.
Abstract:
An electrical polarization filter, an electronic apparatus including the electrical polarization filter, and a method of operating the electronic apparatus are provided. The electrical polarization filter includes a liquid crystal panel configured to control a polarization angle of incident light and a polarization unit configured to display a linear polarization characteristic. The liquid crystal panel includes first and second transparent plates, first and second electrodes provided between the first transparent plate and the second transparent plate, and a liquid crystal layer provided between the first electrode and the second electrode, wherein the incident light directly enters one of the first and second transparent plate provided on an outer side. The polarization unit may be a passive type polarization unit or an active type polarization unit.
Abstract:
A color separation element array includes color separation elements which are two-dimensionally arranged to separate an incident light according to a wavelength such that a light of a first wavelength is directed to a first direction and a light of a second wavelength that is different from the first wavelength is directed to a second direction that is different from the first direction. Each of the color separation elements includes a first element and a second element that are sequentially arranged along a traveling direction of the incident light, and the first element and the second element of the color separation elements are symmetrically shifted with respect to a center area of the color separation element array, to be aligned to fit to the traveling direction of the incident light that is obliquely incident.
Abstract:
A stacked image sensor and a method of manufacturing the same are provided. The stacked image sensor includes a lower photoelectric conversion layer, a micro-lens provided on the lower photoelectric conversion layer, and an upper photoelectric conversion layer provided on the micro-lens. The lower photoelectric conversion layer and the upper photoelectric conversion layer are different types of photoelectric conversion layers.