Abstract:
A signal processing circuit whose power consumption can be suppressed is provided. In a period during which a power supply voltage is not supplied to a storage element, data stored in a first storage circuit corresponding to a nonvolatile memory can be held by a first capacitor provided in a second storage circuit. With the use of a transistor in which a channel is formed in an oxide semiconductor layer, a signal held in the first capacitor is held for a long time. The storage element can accordingly hold the stored content (data) also in a period during which the supply of the power supply voltage is stopped. A signal held by the first capacitor can be converted into the one corresponding to the state (the on state or off state) of the second transistor and read from the second storage circuit. Consequently, an original signal can be accurately read.
Abstract:
A semiconductor circuit capable of controlling and holding the threshold voltage of a transistor at an optimal level and a driving method thereof are disclosed. A storage device, a display device, or an electronic device including the semiconductor circuit is also provided. The semiconductor circuit comprises a diode and a first capacitor provided in a node to which a transistor to be controlled is connected through its back gate. This structure allows the application of desired voltage to the back gate so that the threshold voltage of the transistor is controlled at an optimal level and can be held for a long time. A second capacitor connected in parallel with the diode is optionally provided so that the voltage of the node can be changed temporarily.
Abstract:
An object is to reduce, with the control circuit of the full-bridge inverter circuit, distortions in an output signal of the inverter circuit resulting from an error in control of the switching of the high-side transistors and low-side transistors included in the first half-bridge circuit and the second half-bridge circuit. The pulse width of a signal that controls ON/OFF of the high-side transistors and low-side transistors included in the first half-bridge circuit and the second half-bridge circuit is reduced, i.e., the duty cycle of the signal is reduced. This results in a reduction in short-circuit periods during which both the high-side transistor and the low-side transistor are on, thereby reducing distortions in a signal.
Abstract:
An integrated circuit which can be switched to a resting state and can be returned from the resting state rapidly is provided. An integrated circuit whose power consumption can be reduced without the decrease in operation speed is provided. A method for driving the integrated circuit is provided. The integrated circuit includes a first flip-flop and a second flip-flop including a nonvolatile memory circuit. In an operating state in which power is supplied, the first flip-flop retains data. In a resting state in which supply of power is stopped, the second flip-flop retains data. On transition from the operating state into the resting state, the data is transferred from the first flip-flop to the second flip-flop. On return from the resting state to the operating state, the data is transferred from the second flip-flop to the first flip-flop.
Abstract:
A memory element having a novel structure and a signal processing circuit including the memory element are provided. A first circuit, including a first transistor and a second transistor, and a second circuit, including a third transistor and a fourth transistor, are included. A first signal potential and a second signal potential, each corresponding to an input signal, are respectively input to a gate of the second transistor via the first transistor in an on state and to a gate of the fourth transistor via the third transistor in an on state. After that, the first transistor and the third transistor are turned off. The input signal is read out using both the states of the second transistor and the fourth transistor. A transistor including an oxide semiconductor in which a channel is formed can be used for the first transistor and the third transistor.
Abstract:
An integrated circuit which can be switched to a resting state and can be returned from the resting state rapidly is provided. An integrated circuit whose power consumption can be reduced without the decrease in operation speed is provided. A method for driving the integrated circuit is provided. The integrated circuit includes a first flip-flop and a second flip-flop including a nonvolatile memory circuit. In an operating state in which power is supplied, the first flip-flop retains data. In a resting state in which supply of power is stopped, the second flip-flop retains data. On transition from the operating state into the resting state, the data is transferred from the first flip-flop to the second flip-flop. On return from the resting state to the operating state, the data is transferred from the second flip-flop to the first flip-flop.
Abstract:
To provide a semiconductor device with excellent charge retention characteristics, an OS transistor is used as a transistor whose gate is connected to a node for retaining charge. Charge is stored in a first capacitor, and data at the node for retaining charge is read based on whether the stored charge is transferred to a second capacitor. Since a Si transistor, in which leakage current through a gate insulating film occurs, is not used as a transistor connected to the node for retaining charge, charge retention characteristics of the node are improved. In addition, the semiconductor device operates in data reading without requiring transistor performance equivalent to that of a Si transistor.