Abstract:
A flexible device with fewer defects caused by a crack is provided. A flexible device with high productivity is also provided. Furthermore, a flexible device with less display failure even in a high temperature and high humidity environment is provided. A light-emitting device includes a first flexible substrate, a second flexible substrate, a buffer layer, a first crack inhibiting layer, and a light-emitting element. A first surface of the first flexible substrate faces a second surface of the second flexible substrate. The buffer layer and the first crack inhibiting layer are provided over the first surface of the first flexible substrate. The buffer layer overlaps with the first crack inhibiting layer. The light-emitting element is provided over the second surface of the second flexible substrate.
Abstract:
To provide a display device with a manufacturing yield and/or a display device with suppressed mixture of colors between adjacent pixels. The display device includes a first pixel electrode, a second pixel electrode, a first insulating layer, a second insulating layer, and an adhesive layer. The first insulating layer includes a first opening. The second insulating layer includes a second opening. The first opening and the second opening are provided between the first pixel electrode and the second pixel electrode. In a top view, a periphery of the second opening is positioned on an inner side than a periphery of the first opening. The adhesive layer has a region overlapping with the second insulating layer below the second insulating layer.
Abstract:
A flexible device with fewer defects caused by a crack is provided. A flexible device with high productivity is also provided. Furthermore, a flexible device with less display failure even in a high temperature and high humidity environment is provided. A light-emitting device includes a first flexible substrate, a second flexible substrate, a buffer layer, a first crack inhibiting layer, and a light-emitting element. A first surface of the first flexible substrate faces a second surface of the second flexible substrate. The buffer layer and the first crack inhibiting layer are provided over the first surface of the first flexible substrate. The buffer layer overlaps with the first crack inhibiting layer. The light-emitting element is provided over the second surface of the second flexible substrate.
Abstract:
To improve the display quality of a display device. To display a high-quality video regardless of a usage environment. To provide a light-weight and non-breakable display device. To reduce power consumption of a display device. The display device includes a first display element, a second display element, a light diffusion plate, and a polarizing plate. The first display element is a reflective liquid crystal element. The second display element is configured to emit visible light. The light diffusion plate and the polarizing plate are closer to a display surface side than the first display element is. The display device is configured to display an image using one or both of first light reflected by the first display element and second light emitted by the second display element.
Abstract:
To provide a light-emitting panel in which the occurrence of crosstalk is suppressed. To provide a method for manufacturing a light-emitting panel in which the occurrence of crosstalk is suppressed. The light-emitting panel includes a first electrode of one light-emitting element, a first electrode of the other light-emitting element, and an insulating partition which separates the two first electrodes. A portion with a thickness A1 smaller than a thickness A0 of a portion of the layer containing a light-emitting organic compound, which overlaps with a side surface of the partition, is included. The ratio (B1/B0) of a thickness B1 of a portion of the second electrode, which overlaps with a side surface of the partition, to a thickness B0 of a portion of the second electrode, which overlaps with the first electrode, is higher than the ratio (A1/A0).