Abstract:
A highly reliable light-emitting device and a manufacturing method thereof are provided. A light-emitting element and a terminal electrode are formed over an element formation substrate; a first substrate having an opening is formed over the light-emitting element and the terminal electrode with a bonding layer provided therebetween; an embedded layer is formed in the opening; a transfer substrate is formed over the first substrate and the embedded layer; the element formation substrate is separated; a second substrate is formed under the light-emitting element and the terminal electrode; and the transfer substrate and the embedded layer are removed. In addition, an anisotropic conductive connection layer is formed in the opening, and an electrode is formed over the anisotropic conductive connection layer. The terminal electrode and the electrode are electrically connected to each other through the anisotropic conductive connection layer.
Abstract:
A display device whose aspect ratio can be changed is provided. The display device includes a plurality of display units and a plurality of driver circuit units. The plurality of display units each include a light-emitting portion and a connection region. The plurality of driver circuit units each include a driver circuit portion and a connection region. The connection regions of the adjacent units overlap with each other and one shaft passes through the connection regions. The adjacent units are electrically connected to each other with the one shaft. With such a structure, an angle between the adjacent units electrically connected to each other with one shaft can be changed, which enables the aspect ratio of the display device to be changed.
Abstract:
A processing apparatus of a stack is provided. The stack includes two substrates attached to each other with a gap provided between their end portions. The processing apparatus includes a fixing mechanism that fixes part of the stack, a plurality of adsorption jigs that fix an outer peripheral edge of one of the substrates of the stack, and a wedge-shaped jig that is inserted into a corner of the stack. The plurality of adsorption jigs include a mechanism that allows the adsorption jigs to move separately in a vertical direction and a horizontal direction. The processing apparatus further includes a sensor sensing a position of the gap between the end portion in the stack. A tip of the wedge-shaped jig moves along a chamfer formed on an end surface of the stack. The wedge-shaped jig is inserted into the gap between the end portions in the stack.
Abstract:
Provided is a novel functional panel that is highly convenient or reliable, a manufacturing method of the novel functional panel that is highly convenient or reliable, a novel light-emitting device that is highly convenient or reliable, or a novel data processing device that is highly convenient or reliable. One embodiment of the present invention includes a release layer, a first base including a region overlapping with the release layer, a terminal between the release layer and the first base, a second base including a region overlapping with the first base, a bonding layer between the first base and the second base. The terminal includes a region not overlapping with the bonding layer.
Abstract:
A method for manufacturing a display device is provided. The method includes forming a display element interposed between a first substrate and a second substrate and peeling the second substrate from the first substrate so that an electrode, which is located between the first and second substrates and to be connected to an external electrode, is exposed simultaneously with the peeling of the second substrate.
Abstract:
Provided is a method for manufacturing a semiconductor device, which prevents waste generation from being caused peeling of films and prevents failure of peeling from being caused by waste due to peeling of films. A first semiconductor substrate is used which has a structure in which a peeling layer is not formed in a section subjected to a first dividing treatment, so that the peeling layer is not exposed at the end surface of a second semiconductor substrate when the second semiconductor substrate is cut out of the first semiconductor substrate. In addition, a supporting material is provided on a layer to be peeled of the second semiconductor substrate before the second semiconductor substrate is subjected to a second dividing treatment.
Abstract:
A highly reliable light-emitting device and a manufacturing method thereof are provided. A light-emitting element and a terminal electrode are formed over an element formation substrate; a first substrate having an opening is formed over the light-emitting element and the terminal electrode with a bonding layer provided therebetween; an embedded layer is formed in the opening; a transfer substrate is formed over the first substrate and the embedded layer; the element formation substrate is separated; a second substrate is formed under the light-emitting element and the terminal electrode; and the transfer substrate and the embedded layer are removed. In addition, an anisotropic conductive connection layer is formed in the opening, and an electrode is formed over the anisotropic conductive connection layer. The terminal electrode and the electrode are electrically connected to each other through the anisotropic conductive connection layer.
Abstract:
A display device whose aspect ratio can be changed is provided. The display device includes a plurality of display units and a plurality of driver circuit units. The plurality of display units each include a light-emitting portion and a connection region. The plurality of driver circuit units each include a driver circuit portion and a connection region. The connection regions of the adjacent units overlap with each other and one shaft passes through the connection regions. The adjacent units are electrically connected to each other with the one shaft. With such a structure, an angle between the adjacent units electrically connected to each other with one shaft can be changed, which enables the aspect ratio of the display device to be changed.
Abstract:
Deterioration of a storage battery included in an electronic device is reduced. Power consumption of an electronic device is reduced. A power feeding device having excellent performance is provided. The power feeding device includes a power feeding coil, a control circuit, and a neural network and has a function of charging a storage battery with a wireless signal supplied by the power feeding coil. The control circuit has a function of estimating a remaining capacity value of the storage battery, the control circuit has a function of supplying the estimated remaining capacity value to the neural network, the neural network outputs a value corresponding to the supplied remaining capacity value to the control circuit, the control circuit determines a charge condition for the storage battery on the basis of the value output by the neural network, and the power feeding device has a function of charging the storage batten under the determined charge condition.
Abstract:
A display device, an electronic device, or a lighting device that is unlikely to be broken is provided. A flexible first substrate and a flexible second substrate overlap with each other with a display element provided therebetween. A flexible third substrate is bonded on the outer surface of the first substrate, and a flexible fourth substrate is bonded on the outer surface of the second substrate. The third substrate is formed using a material softer than the first substrate, and the fourth substrate is formed using a material softer than the second substrate.