Abstract:
A silicon on insulator substrate includes a semiconductor bulk handle wafer, an insulating layer on said semiconductor bulk handle wafer and a semiconductor film on said insulating layer. An opening extends completely through the semiconductor film and insulating layer to expose a surface of the semiconductor bulk handle wafer. Epitaxial material fills the opening and extends on said semiconductor film, with the epitaxial material and semiconductor film forming a thick semiconductor film. A trench isolation surrounds a region of the thick semiconductor film to define an electrical contact made to the semiconductor bulk handle wafer through the opening.
Abstract:
An integrated circuit includes a substrate having at least one first domain and at least one second domain that is different from the at least one first domain. A trap-rich region is provided in the substrate at the locations of the at least one second domain only. Locations of the at least one first domain do not include the trap-rich region.
Abstract:
The invention relates to a method for measuring thickness variations in a layer of a multilayer semiconductor structure, characterized in that it comprises: acquiring, via an image acquisition system, at least one image of the surface of the structure, the image being obtained by reflecting an almost monochromatic light flux from the surface of the structure; and processing the at least one acquired image in order to determine, from variations in the intensity of the light reflected from the surface, variations in the thickness of the layer to be measured, and in that the wavelength of the almost monochromatic light flux is chosen to correspond to a minimum of the sensitivity of the reflectivity of a layer of the structure other than the layer the thickness variations of which must be measured, the sensitivity of the reflectivity of a layer being equal to the ratio of: the difference between the reflectivities of two multilayer structures for which the layer in question has a given thickness difference; to the given thickness difference, the thicknesses of the other layers being for their part identical in the two multilayer structures. The invention also relates to a measuring system implementing the method.
Abstract:
An integrated circuit includes a substrate having at least one first domain and at least one second domain that is different from the at least one first domain. A trap-rich region is provided in the substrate at the locations of the at least one second domain only. Locations of the at least one first domain do not include the trap-rich region.
Abstract:
In accordance with an embodiment, a method for manufacturing an optical device on a support substrate includes: forming first microlens structures on the support substrate using a first photolithography process such that the first microlens structures are separated from one another; deforming the first microlens structures so as to give the first microlens structures a curved shape, wherein the first microlens structures are separated from one another by spacer regions after deformation; forming second microlens structures substrate using a second photolithography process such that the second microlens structures extend over the first microlens structures; and deforming the second microlens structures such that the second microlens structures have a curved form matching the curved shape of the first microlens structures and extend partly into the spacer regions between the first microlens structures.
Abstract:
An integrated optical sensor is formed by a pinned photodiode. A semiconductor substrate includes a first semiconductor region having a first type of conductivity located between a second semiconductor region having a second type of conductivity opposite to the first type one and a third semiconductor region having the second type of conductivity. The third semiconductor region is thicker, less doped and located deeper in the substrate than the second semiconductor region. The third semiconductor region includes both silicon and germanium. In one implementation, the germanium within the third semiconductor region has at least one concentration gradient. In another implementation, the germanium concentration within the third semiconductor region is substantially constant.
Abstract:
A method for producing at least one deep trench isolation in a semiconductor substrate including silicon and having a front side may include forming at least one cavity in the semiconductor substrate from the front side. The method may include conformally depositing dopant atoms on walls of the cavity, and forming, in the vicinity of the walls of the cavity, a silicon region doped with the dopant atoms. The method may further include filling the cavity with a filler material to form the at least one deep trench isolation.
Abstract:
The invention relates to a method for measuring thickness variations in a layer of a multilayer semiconductor structure, characterized in that it comprises: acquiring, via an image acquisition system, at least one image of the surface of the structure, the image being obtained by reflecting an almost monochromatic light flux from the surface of the structure; and processing the at least one acquired image in order to determine, from variations in the intensity of the light reflected from the surface, variations in the thickness of the layer to be measured, and in that the wavelength of the almost monochromatic light flux is chosen to correspond to a minimum of the sensitivity of the reflectivity of a layer of the structure other than the layer the thickness variations of which must be measured, the sensitivity of the reflectivity of a layer being equal to the ratio of: the difference between the reflectivities of two multilayer structures for which the layer in question has a given thickness difference; to the given thickness difference, the thicknesses of the other layers being for their part identical in the two multilayer structures. The invention also relates to a measuring system implementing the method.
Abstract:
A method for producing at least one deep trench isolation in a semiconductor substrate including silicon and having a front side may include forming at least one cavity in the semiconductor substrate from the front side. The method may include conformally depositing dopant atoms on walls of the cavity, and forming, in the vicinity of the walls of the cavity, a silicon region doped with the dopant atoms. The method may further include filling the cavity with a filler material to form the at least one deep trench isolation.
Abstract:
A substrate made of doped single-crystal silicon has an upper surface. A doped single-crystal silicon layer is formed by epitaxy on top of and in contact with the upper surface of the substrate. Either before or after forming the doped single-crystal silicon layer, and before any other thermal treatment step at a temperature in the range from 600° C. to 900° C., a denuding thermal treatment is applied to the substrate for several hours. This denuding thermal treatment is at a temperature higher than or equal to 1,000° C.