Abstract:
A method for making a photolithography mask for formation of electrically conducting contact pads between tracks of a metallization level and electrically active zones of integrated circuits formed on a semiconductor wafer includes forming a first mask region including first opening zones intended for the formation of the contact pads. The first opening zone has a first degree of opening that is below a threshold. A second mask region including additional opening zones is formed, with the overall degree of opening of the mask being greater than or equal to the threshold.
Abstract:
An integrated circuit includes an interconnection part with a via level situated between a lower metallization level and an upper metallization level. The lower metallization level is covered by an insulating encapsulation layer and an inter-metallization level insulating layer. An electrical discontinuity is provided between a via of the via level and a metal track of the lower metallization level. The electrical discontinuity is formed by an additional insulating layer having a material composition identical to that of the inter-metallization level insulating layer. The electrical discontinuity is situated between a bottom of the via and a top of the metal track, with the discontinuity being bordered by the insulating encapsulation layer.
Abstract:
An integrated circuit includes a substrate and at least one NMOS transistor having, in the substrate, an active region surrounded by a trench insulating region. The transistor, active region and trench insulating region are covered by an additional insulating region. A metal contact extends through the additional insulating region to make contact with the trench insulating region. The metal contact may penetrate into the trench insulating region.
Abstract:
An integrated circuit includes a substrate and at least one component unfavorably sensitive to compressive stress which is arranged at least partially within an active region of the substrate limited by an insulating region. To address compressive stress in the active region, the circuit further includes at least one electrically inactive trench located at least in the insulating region and containing an internal area configured to reduce compressive stress in the active region. The internal area is filled with polysilicon. The polysilicon filled trench may further extend through the insulating region and into the substrate.
Abstract:
An integrated circuit includes a substrate and at least one component unfavorably sensitive to compressive stress which is arranged at least partially within an active region of the substrate limited by an insulating region. To address compressive stress in the active region, the circuit further includes at least one electrically inactive trench located at least in the insulating region and containing an internal area configured to reduce compressive stress in the active region. The internal area is filled with polysilicon. The polysilicon filled trench may further extend through the insulating region and into the substrate.
Abstract:
An integrated circuit includes an interconnection part with a via level situated between a lower metallization level and an upper metallization level. The lower metallization level is covered by an insulating encapsulation layer. An electrical discontinuity between a first via of the via level and a first metal track of the lower metallization level is provided at the level of the insulating encapsulation layer. The electrical discontinuity is formed prior to formation of any via of the via level and prior to any metal track of the upper metallization level. The electrical discontinuity may comprise: a portion of an additional insulating layer extending over the insulating encapsulation layer; a portion of the insulating encapsulation layer; or an insulating oxide on a top surface of the first metal track.
Abstract:
An integrated circuit includes a substrate with several functional blocks formed thereon. At least two identical functional blocks are respectively disposed at two or more different locations on the integrated circuit. Electrically inactive dummy modules in the neighborhoods and/or inside of the functional blocks are provided, wherein at least two different electrically inactive dummy modules are includes in the respective neighborhoods and/or inside of the at least two identical functional blocks.
Abstract:
An integrated circuit includes a substrate and at least one component unfavorably sensitive to compressive stress which is arranged at least partially within an active region of the substrate limited by an insulating region. To address compressive stress in the active region, the circuit further includes at least one electrically inactive trench located at least in the insulating region and containing an internal area configured to reduce compressive stress in the active region. The internal area is filled with polysilicon. The polysilicon filled trench may further extend through the insulating region and into the substrate.
Abstract:
An integrated circuit includes a substrate with several functional blocks formed thereon. At least two identical functional blocks are respectively disposed at two or more different locations on the integrated circuit. Electrically inactive dummy modules in the neighborhoods and/or inside of the functional blocks are provided, wherein at least two different electrically inactive dummy modules are includes in the respective neighborhoods and/or inside of the at least two identical functional blocks.
Abstract:
An integrated circuit includes a substrate and at least one NMOS transistor having, in the substrate, an active region surrounded by an insulating region. The insulating region is formed to includes at least one area in which the insulating region has two insulating extents that are mutually separated from each other by a separation region formed by a part of the substrate.