Abstract:
A negative impedance circuit includes: a differential circuit stage; a positive feedback path from an output of the differential circuit stage to a first input of the differential circuit stage; and a negative feedback path from the output of the differential circuit stage to a second input of the differential circuit stage. The negative feedback path includes a first transistor, and a unitary gain path from the output of the differential circuit stage to the second input of the differential circuit stage, the unitary gain path coupled to ground via a reference impedance. The positive feedback path includes a second transistor. The first and second transistors are coupled in a current mirror arrangement and have respective control electrodes configured to be driven by the output of the differential circuit stage, where the negative impedance circuit causes a negative impedance at the first input of the differential circuit stage.
Abstract:
A fully balanced differential difference amplifier includes a first differential input stage that receives an input voltage and a second differential input stage that receives a common-mode voltage. A first resistive-degeneration group is coupled to the first differential input and a second resistive-degeneration group is coupled to the second differential input. A differential output stage generates an output voltage. A first switch is coupled in parallel to the first resistive-degeneration group and a second switch is coupled in parallel with the second resistive-degeneration group. The first and second switches are driven into the closed state when the voltage input assumes a first value such that said first input stage operates in the linear region, and are driven into the open state when the voltage input assumes a second value, higher than the first value, such that the first input stage operates in a non-linear region.
Abstract:
An amplifier circuit, for a capacitive acoustic transducer defining a sensing capacitor that generates a sensing signal as a function of an acoustic signal, has a first input terminal and a second input terminal, which are coupled to the sensing capacitor and: a dummy capacitor, which has a capacitance corresponding to a capacitance at rest of the sensing capacitor and a first terminal connected to the first input terminal; a first amplifier, which is coupled at input to the second input terminal and defines a first differential output of the circuit; a second amplifier, which is coupled at input to a second terminal of the dummy capacitor and defines a second differential output of the circuit; and a feedback stage, which is coupled between the differential outputs and the first input terminal, for feeding back onto the first input terminal a feedback signal, which has an amplitude that is a function of the sensing signal and is in phase opposition with respect thereto.
Abstract:
An amplifier circuit, for a capacitive acoustic transducer defining a sensing capacitor that generates a sensing signal as a function of an acoustic signal, has a first input terminal and a second input terminal, which are coupled to the sensing capacitor and: a dummy capacitor, which has a capacitance corresponding to a capacitance at rest of the sensing capacitor and a first terminal connected to the first input terminal; a first buffer amplifier, which is coupled at input to the second input terminal and defines a first differential output of the circuit; a second buffer amplifier, which is coupled at input to a second terminal of the dummy capacitor and defines a second differential output of the circuit; and a feedback stage, which is coupled between the differential outputs and the first input terminal, for feeding back onto the first input terminal a feedback signal, which has an amplitude that is a function of the sensing signal and is in phase opposition with respect thereto.
Abstract:
A FBDDA amplifier comprising: a first differential input stage, which receives an input voltage; a second differential input stage, which receives a common-mode voltage; a first resistive-degeneration group coupled to the first differential input; a second resistive-degeneration group coupled to the second differential input; a differential output stage, generating an output voltage; a first switch coupled in parallel to the first resistive-degeneration group; and a second switch coupled in parallel to the second resistive-degeneration group. The first and second switches are driven into the closed state when the voltage input assumes a first value such that said first input stage operates in the linear region, and are driven into the open state when the voltage input assumes a second value, higher than the first value, such that the first input stage operates in a non-linear region.
Abstract:
An amplifier circuit, for a capacitive acoustic transducer defining a sensing capacitor that generates a sensing signal as a function of an acoustic signal, has a first input terminal and a second input terminal, which are coupled to the sensing capacitor and: a dummy capacitor, which has a capacitance corresponding to a capacitance at rest of the sensing capacitor and a first terminal connected to the first input terminal; a first buffer amplifier, which is coupled at input to the second input terminal and defines a first differential output of the circuit; a second buffer amplifier, which is coupled at input to a second terminal of the dummy capacitor and defines a second differential output of the circuit; and a feedback stage, which is coupled between the differential outputs and the first input terminal, for feeding back onto the first input terminal a feedback signal, which has an amplitude that is a function of the sensing signal and is in phase opposition with respect thereto.
Abstract:
A MEMS acoustic transducer has: a detection structure, which generates an electrical detection quantity as a function of a detected acoustic signal; and an electronic interface circuit, which is operatively coupled to the detection structure and generates an electrical output quantity as a function of the electrical detection quantity. The detection structure has a first micromechanical structure of a capacitive type and a second micromechanical structure of a capacitive type, each including a membrane that faces and is capacitively coupled to a rigid electrode and defines a respective first detection capacitor and second detection capacitor; the electronic interface circuit defines an electrical connection in series of the first detection capacitor and second detection capacitor between a biasing line and a reference line, and further has a first single-output amplifier and a second single-output amplifier, which are coupled to a respective one of the first detection capacitor and the second detection capacitor and have a respective first output terminal and second output terminal, between which the electrical output quantity is present.
Abstract:
A MEMS acoustic transducer device has a capacitive microelectromechanical sensing structure and a biasing circuit. The biasing circuit includes a voltage-boosting circuit that supplies a boosted voltage on an output terminal, and a high-impedance insulating circuit element set between the output terminal and a terminal of the sensing structure, which defines a first high-impedance node associated with the insulating circuit element. The biasing circuit has: a pre-charge stage that generates a first pre-charge voltage on a first output thereof, as a function of, and distinct from, the boosted voltage; and a first switch element set between the first output and the first high-impedance node. The first switch element is operable for selectively connecting the first high-impedance node to the first output, during a phase of start-up of the biasing circuit, for biasing the first high-impedance node to the first pre-charge voltage.
Abstract:
A MEMS acoustic transducer device has a capacitive microelectromechanical sensing structure and a biasing circuit. The biasing circuit includes a voltage-boosting circuit that supplies a boosted voltage on an output terminal, and a high-impedance insulating circuit element set between the output terminal and a terminal of the sensing structure, which defines a first high-impedance node associated with the insulating circuit element. The biasing circuit has: a pre-charge stage that generates a first pre-charge voltage on a first output thereof, as a function of, and distinct from, the boosted voltage; and a first switch element set between the first output and the first high-impedance node. The first switch element is operable for selectively connecting the first high-impedance node to the first output, during a phase of start-up of the biasing circuit, for biasing the first high-impedance node to the first pre-charge voltage.