Abstract:
Methods are directed to forming an electronic semiconductor device that includes a body having a first side and a second side opposite to one another and including a first structural region facing the second side, and a second structural region extending over the first structural region and facing the first side. A body region extends in the second structural region at the first side. A source region extends inside the body region and a lightly-doped drain region faces the first side of the body. A gate electrode is formed over the body region. A trench dielectric region extends through the second structural region in a first trench conductive region immediately adjacent to the trench dielectric region. A second trench conductive region is in electrical contact with the body region and source region. An electrical contact on the body is in electrical contact with the drain region through the first structural region.
Abstract:
Methods form an electronic semiconductor device that includes a body having a first side and a second side opposite to one another and including a first structural region facing the second side, and a second structural region extending over the first structural region and facing the first side. A body region extends in the second structural region at the first side. A source region extends inside the body region and a lightly-doped drain region faces the first side of the body. A gate electrode is formed over the body region. A trench dielectric region extends through the second structural region in a first trench conductive region immediately adjacent to the trench dielectric region. A second trench conductive region is in electrical contact with the body region and source region. An electrical contact on the body is in electrical contact with the drain region through the first structural region.
Abstract:
An electronic semiconductor device including a semiconductor body having a first structural region and a second structural region, which extends on the first structural region and houses a drain region; a body region, which extends into the second structural region; a source region, which extends into the body region; and a gate electrode, which extends over the semiconductor body for generating a conductive channel between the source region and the drain region. The device includes a first conductive trench extending through, and electrically insulated from, the second structural region on one side of the gate electrode; and a second conductive trench extending through the source region, the body region, and right through the second structural region on an opposite side of the gate electrode, electrically insulated from the second structural region and electrically coupled to the body region and to the source region.
Abstract:
An electronic semiconductor device including a semiconductor body having a first structural region and a second structural region, which extends on the first structural region and houses a drain region; a body region, which extends into the second structural region; a source region, which extends into the body region; and a gate electrode, which extends over the semiconductor body for generating a conductive channel between the source region and the drain region. The device includes a first conductive trench extending through, and electrically insulated from, the second structural region on one side of the gate electrode; and a second conductive trench extending through the source region, the body region, and right through the second structural region on an opposite side of the gate electrode, electrically insulated from the second structural region and electrically coupled to the body region and to the source region.
Abstract:
An electronic semiconductor device comprising: a semiconductor body, having a first side and a second side opposite to one another and including a first structural region facing the second side, and a second structural region extending over the first structural region and facing the first side; a body region extending in the second structural region at the first side; a source region extending inside the body region; an LDD region facing the first side of the semiconductor body; and a gate electrode. The device comprises: a trench dielectric region extending through the second structural region a first trench conductive region immediately adjacent to the trench dielectric region; and a second trench conductive region in electrical contact with the body region and with the source region. An electrical contact at the second side of the semiconductor body is in electrical contact with the drain region via the first structural region.
Abstract:
A particle detector formed by a body defining a chamber and housing a light source and a photodetector. A reflecting surface is formed by a first reflecting region and a second reflecting region that have a respective curved shape. The curved shapes are chosen from among portions of ellipsoidal, paraboloidal, and spherical surfaces. The first reflecting region faces the light source and the second reflecting region faces the photodetector. The first reflecting region has an own first focus, and the second reflecting region has an own first focus. The first focus of the first reflecting region is arranged in an active volume of the body, designed for detecting particles, and the photodetector is arranged on the first focus of the second reflecting region.
Abstract:
The device is formed in a casing including a support, a spacer body, and a mirror element fixed together. A light-emitting element and a light-receiving element are arranged on a bearing surface of the support and face a reflecting surface of the mirror element. The light-emitting element is configured to generate infrared radiation, and the light-receiving element is configured to receive light radiation reflected by the reflecting surface. The spacer body has an emission opening housing the light-emitting element and a reception opening housing the light-receiving element; the reception opening comprises a radiation-limitation portion configured to enable entry of reflected light radiation having an angle, with respect to a normal to the bearing surface, of less than a preset value.
Abstract:
A particle detector formed by a body defining a chamber and housing a light source and a photodetector. A reflecting surface is formed by a first reflecting region and a second reflecting region that have a respective curved shape. The curved shapes are chosen from among portions of ellipsoidal, paraboloidal, and spherical surfaces. The first reflecting region faces the light source and the second reflecting region faces the photodetector. The first reflecting region has an own first focus, and the second reflecting region has an own first focus. The first focus of the first reflecting region is arranged in an active volume of the body, designed for detecting particles, and the photodetector is arranged on the first focus of the second reflecting region.
Abstract:
A sensor of volatile substances including: a sensitive layer, of a sensitive material that is permeable to a volatile substance and has an electrical permittivity depending upon a concentration of the volatile substance absorbed; a first electrode structure and a second electrode structure capacitively coupled together and arranged so that a capacitance between the first electrode structure and the second electrode structure is affected by the electrical permittivity of the sensitive material; and a supply device, configured to supply a heating current through one between the first electrode structure and the second electrode structure in a first operating condition, so as to heat the sensitive layer.
Abstract:
Methods are directed to forming an electronic semiconductor device that includes a body having a first side and a second side opposite to one another and including a first structural region facing the second side, and a second structural region extending over the first structural region and facing the first side. A body region extends in the second structural region at the first side. A source region extends inside the body region and a lightly-doped drain region faces the first side of the body. A gate electrode is formed over the body region. A trench dielectric region extends through the second structural region in a first trench conductive region immediately adjacent to the trench dielectric region. A second trench conductive region is in electrical contact with the body region and source region. An electrical contact on the body is in electrical contact with the drain region through the first structural region.