Abstract:
A magnetic junction and method for providing the magnetic junction are described. The magnetic junction includes free and pinned layers separated by a nonmagnetic spacer layer. The free layer is switchable between stable magnetic states when a write current is passed through the magnetic junction. The pinned layer has a perpendicular magnetic anisotropy (PMA) energy greater than its out-of-plane demagnetization energy. Providing the pinned layer includes providing a bulk PMA (B-PMA) layer, providing an interfacial PMA (I-PMA) layer on the B-PMA layer and then providing a sacrificial layer that is a sink for a constituent of the first I-PMA layer. An anneal is then performed. The sacrificial layer and part of the first I-PMA layer are removed after the anneal. Additional I-PMA layer(s) are provided after the removing. A remaining part of the first I-PMA layer and the additional I-PMA layer(s) have a thickness of not more than twenty Angstroms.
Abstract:
A method for providing a magnetic junction usable in a magnetic device and the magnetic junction are described. The method includes providing a free layer, a pinned layer and a nonmagnetic spacer layer between the free layer and the pinned layer. The free layer is switchable between stable magnetic states when a write current is passed through the magnetic junction. At least one of the steps of providing the free layer and providing the pinned layer includes providing magnetic and sacrificial layers and performing two anneals of the sacrificial and magnetic layers. The magnetic layer includes a glass-promoting component and is amorphous as-deposited. The first anneal is at a first temperature exceeding 300 degrees Celsius and not exceeding 450 degrees Celsius. The second anneal is at a second temperature greater than the first temperature and performed after the first anneal. The sacrificial layer is removed.
Abstract:
A magnetic junction and method for providing the magnetic junction are described. The magnetic junction includes free and pinned layers separated by a nonmagnetic spacer layer. The free layer is switchable between stable magnetic states when a write current is passed through the magnetic junction. The pinned layer has a perpendicular magnetic anisotropy (PMA) energy greater than its out-of-plane demagnetization energy. Providing the pinned layer includes providing a bulk PMA (B-PMA) layer, providing an interfacial PMA (I-PMA) layer on the B-PMA layer and then providing a sacrificial layer that is a sink for a constituent of the first I-PMA layer. An anneal is then performed. The sacrificial layer and part of the first I-PMA layer are removed after the anneal. Additional I-PMA layer(s) are provided after the removing. A remaining part of the first I-PMA layer and the additional I-PMA layer(s) have a thickness of not more than twenty Angstroms.
Abstract:
A method provides a magnetic junction having a top and sides. A first magnetic layer, a nonmagnetic spacer layer and a second magnetic layer are deposited. The nonmagnetic spacer layer is between the first and second magnetic layers. A free layer is one of the magnetic layers. A reference layer is the other of the magnetic layers. The second magnetic layer includes an amorphous magnetic layer having nonmagnetic constituent(s) that are glass-formming. An anneal is performed in a gas having an affinity for the nonmagnetic constituent(s). The gas includes at least one of first and second gases. The first gas forms a gaseous compound with the nonmagnetic constituent(s) The second gas forms a solid compound with the nonmagnetic constituent(s). The second gas is usable if the anneal is performed after the magnetic junction has been defined. The solid compound is at least on the sides of the magnetic junction.
Abstract:
A method for providing a magnetic junction usable in a magnetic device and the magnetic junction are described. The method includes providing a free layer, a pinned layer and a nonmagnetic spacer layer between the free layer and the pinned layer. The free layer is switchable between a plurality of stable magnetic states when a write current is passed through the magnetic junction. At least one of the step of providing the free layer includes a first plurality of steps and the step of providing the pinned layer includes a second plurality of steps. The first and second plurality of steps include depositing a portion of a layer, depositing a sacrificial layer, annealing the portion of the magnetic junction under the sacrificial layer, and depositing a remaining portion of the layer. The layer may be the free layer, the pinned layer, or both.