Abstract:
A magnetic memory device may include a perpendicular magnetic structure, an in-plane magnetic structure, a free magnetic pattern between the perpendicular magnetic structure and the in-plane magnetic structure, and a tunnel barrier pattern between the perpendicular magnetic structure and the free magnetic pattern. The perpendicular magnetic structure may include at least one pinned pattern which has a perpendicular magnetization direction that is pinned to a specific direction, and the free magnetic pattern may have a switchable perpendicular magnetization direction. The in-plane magnetic structure may include a first magnetic pattern and a second magnetic pattern, and each of the first and second magnetic patterns may have a different respective in-plane magnetization direction.
Abstract:
A magnetic memory device is provided. The magnetic memory device includes a first vertical magnetic layer and a second vertical magnetic layer on a substrate, a tunnel barrier layer between the first vertical magnetic layer and the second vertical magnetic layer, and an exchange-coupling layer between a first sub-layer of the first vertical magnetic layer and a second sub-layer of the first vertical magnetic layer.
Abstract:
A magnetic memory device is provided. The magnetic memory device includes a first vertical magnetic layer and a second vertical magnetic layer on a substrate, a tunnel barrier layer between the first vertical magnetic layer and the second vertical magnetic layer, and an exchange-coupling layer between a first sub-layer of the first vertical magnetic layer and a second sub-layer of the first vertical magnetic layer.
Abstract:
Methods of fabricating semiconductor devices are provided including forming a dielectric interlayer on a substrate, the dielectric interlayer defining an opening therein. A metal pattern is formed in the opening. An oxidization process is performed on the metal pattern to form a conductive metal oxide pattern, and the conductive metal oxide pattern is planarized. Related semiconductor devices are also provided.
Abstract:
A magnetic memory device may include a perpendicular magnetic structure, an in-plane magnetic structure, a free magnetic pattern between the perpendicular magnetic structure and the in-plane magnetic structure, and a tunnel barrier pattern between the perpendicular magnetic structure and the free magnetic pattern. The perpendicular magnetic structure may include at least one pinned pattern which has a perpendicular magnetization direction that is pinned to a specific direction, and the free magnetic pattern may have a switchable perpendicular magnetization direction. The in-plane magnetic structure may include a first magnetic pattern and a second magnetic pattern, and each of the first and second magnetic patterns may have a different respective in-plane magnetization direction.
Abstract:
A method for providing a magnetic junction usable in a magnetic device and the magnetic junction are described. The method includes providing a free layer, a pinned layer and a nonmagnetic spacer layer between the free layer and the pinned layer. The free layer is switchable between a plurality of stable magnetic states when a write current is passed through the magnetic junction. At least one of the step of providing the free layer includes a first plurality of steps and the step of providing the pinned layer includes a second plurality of steps. The first and second plurality of steps include depositing a portion of a layer, depositing a sacrificial layer, annealing the portion of the magnetic junction under the sacrificial layer, and depositing a remaining portion of the layer. The layer may be the free layer, the pinned layer, or both.
Abstract:
A magnetic junction usable in a magnetic device and a method for providing the magnetic junction are described. The magnetic junction includes a free layer, a pinned layer and nonmagnetic spacer layer between the free and pinned layers. The free layer is switchable between a plurality of stable magnetic states when a write current is passed through the magnetic junction. The pinned layer has a perpendicular magnetic anisotropy energy greater than an out-of-plane demagnetization energy. The nonmagnetic spacer layer and the free layer are between the pinned layer and the substrate. The pinned layer has a pinned layer perpendicular magnetic anisotropy energy greater than a pinned layer out-of-plane demagnetization energy and a thickness of not more than thirty Angstroms.
Abstract:
A magnetic memory device is provided. The magnetic memory device includes a first vertical magnetic layer and a second vertical magnetic layer on a substrate, a tunnel barrier layer between the fist vertical magnetic layer and the second vertical magnetic layer, and an exchange-coupling layer between a first sub-layer of the first vertical magnetic layer and a second sub-layer of the first vertical magnetic layer.
Abstract:
A magnetic memory device may include a perpendicular magnetic structure, an in-plane magnetic structure, a free magnetic pattern between the perpendicular magnetic structure and the in-plane magnetic structure, and a tunnel barrier pattern between the perpendicular magnetic structure and the free magnetic pattern. The perpendicular magnetic structure may include at least one pinned pattern which has a perpendicular magnetization direction that is pinned to a specific direction, and the free magnetic pattern may have a switchable perpendicular magnetization direction. The in-plane magnetic structure may include a first magnetic pattern and a second magnetic pattern, and each of the first and second magnetic patterns may have a different respective in-plane magnetization direction.
Abstract:
A method for providing a magnetic junction usable in a magnetic device and a magnetic junction are described. A reference layer, a crystalline MgO tunneling barrier layer and a free layer are provided. The crystalline MgO tunneling barrier layer is continuous, has a (001) orientation and has a thickness of not more than eleven Angstroms and not less than two Angstroms. The crystalline MgO tunneling barrier layer is between the free layer and the reference layer. The magnetic junction is configured such that the free layer is switchable between stable magnetic states when a write current is passed through the magnetic junction.