Abstract:
A method for CSI report transmission includes detecting a collision in a subframe, between a first PUCCH CSI report of one serving cell with which a UE is configured in one of transmission modes 1 to 9, and a second PUCCH CSI report of another serving cell with which the UE is configured in transmission mode 10. Upon the reporting types of the collided PUCCH CSI reports having a same priority, the method transmits the first PUCCH CSI report if the CSI process index of the second PUCCH CSI report has a positive value other than 1. A method for CSI report transmission includes configuring, via a higher layer, a UE configured in transmission mode 10 whether to create a respective CSI report(s) for each aperiodic CSI process or not, using an information element including at least three one-bit variables.
Abstract:
According to one embodiment, a subscriber station configured to communicate with one or more base stations in a wireless communication network. The subscriber station is configured to receive, from the network, information associated with one or more of the TPs that are candidates for coordinated multipoint (CoMP) transmission with the subscriber station, measure a plurality of channel quality values for each of the one or more TPs, and report to the network, the measured channel quality values.
Abstract:
A user equipment (UE) is configured to determine channel quality information (CQI) in a wireless communication system. The UE includes a processor configured to receive from an eNodeB (eNB) signaling parameters related to a first co-channel precoding matrix indicator (PMI) codebook, determine a second co-channel PMI based on a determined single user PMI (SU-PMI) and the received signaling parameters related to the first co-channel PMI codebook, determine a multi-user CQI (MU-CQI) based on the second co-channel PMI, and transmit the MU-CQI to the eNB.
Abstract:
A mobile station configured to receive transmissions from a two-dimensional array of antennas at a base station is provided. A main processor of the mobile station is configured to estimate first and second channel states and determine a co-phasing scalar component for each of multiple groups of antennas in the array based on the first channel state. The main processor is configured to generate a matrix X that includes a plurality of column vectors selected from a codebook based on the second channel state, generate a matrix P1, wherein the matrix P1 is a block diagonal matrix having the matrix X for each block diagonal element, and generate a matrix P2. The main processor is also configured to transmit to the base station information corresponding to the matrix P1 and to the matrix P2, as well as a CQI that is derived with a precoding matrix P defined by P=P1P2.
Abstract:
A method for transmitting a CSI feedback report to a serving cell comprises for time division duplex, configuring at least one periodic CSI process with a CSI reference source defined by a single downlink subframe n-nCQI—ref, wherein nCQI—ref is a smallest value greater than or equal to a positive integer nCQI—ref—min, such that it corresponds to a valid downlink subframe, wherein nCQI—ref—min varies based on a number of at least one periodic CSI process. A method for CSI feedback reporting to a base station comprises configuring not to accommodate, by a user equipment, the one or more aperiodic CSI requests arrived from a serving cell except a CSI request of CSI processes with lower indexes for each serving cell, wherein a number of the one or more CSI processes with a lower index (es) is determined based on a number of pending CSI reports.
Abstract:
Methods and apparatuses indicate and identify quasi co-located reference signal ports. A method of identifying by a UE includes identifying, from downlink control information, a CSI-RS port that is quasi co-located with a DM-RS port assigned to the UE. The method includes identifying large scale properties for the assigned DM-RS port based on large scale properties for the CSI-RS port. The method includes performing channel estimation and/or time/frequency synchronization using the identified large scale properties for the DM-RS port. Another method for identifying by a UE includes identifying, from downlink control information, a CRS port that is quasi co-located with a CSI-RS port configured for the UE. The method includes identifying large scale properties for the configured CSI-RS port based on large scale properties for the CRS port. The method includes performing channel estimation and/or time/frequency synchronization using the identified large scale properties for the CSI-RS port.
Abstract:
Methods and apparatuses indicate and identify quasi co-located reference signal ports. A method of identifying by a UE includes identifying, from downlink control information, a CSI-RS port that is quasi co-located with a DM-RS port assigned to the UE. The method includes identifying large scale properties for the assigned DM-RS port based on large scale properties for the CSI-RS port. The method includes performing channel estimation and/or time/frequency synchronization using the identified large scale properties for the DM-RS port. Another method for identifying by a UE includes identifying, from downlink control information, a CRS port that is quasi co-located with a CSI-RS port configured for the UE. The method includes identifying large scale properties for the configured CSI-RS port based on large scale properties for the CRS port. The method includes performing channel estimation and/or time/frequency synchronization using the identified large scale properties for the CSI-RS port.
Abstract:
A subscriber station configured to communicate with one or more base stations or other transmission points (TPs) in a wireless communication network is configured to receive, from the network, information associated with one or more of the TPs that are candidates for coordinated multipoint (CoMP) transmission with the subscriber station, to measure a plurality of channel quality values for each of the one or more TPs, and to report the measured channel quality values to the network.
Abstract:
Coordinate multi-point (CoMP) transmission is facilitated by resolving collisions between feedback reporting. Based upon the conditions within the network, collision resolution may be by dropping a channel report during a subframe, multiplexing channel reports from a plurality of user equipment, compressing channel reports from a plurality of user equipment, and combined reporting, either through joint reports or by using carrier aggregation, for conditions between a user equipment and a plurality of transmission points. New signaling and reporting formats facilitate selection of a collision resolution suitable for current network conditions.
Abstract:
Methods and apparatuses indicate and identify quasi co-located reference signal ports. A method of identifying by a UE includes identifying, from downlink control information, a CSI-RS port that is quasi co-located with a DM-RS port assigned to the UE. The method includes identifying large scale properties for the assigned DM-RS port based on large scale properties for the CSI-RS port. The method includes performing channel estimation and/or time/frequency synchronization using the identified large scale properties for the DM-RS port. Another method for identifying by a UE includes identifying, from downlink control information, a CRS port that is quasi co-located with a CSI-RS port configured for the UE. The method includes identifying large scale properties for the configured CSI-RS port based on large scale properties for the CRS port. The method includes performing channel estimation and/or time/frequency synchronization using the identified large scale properties for the CSI-RS port.