Abstract:
A conveyor apparatus is provided. The conveyor apparatus includes a rail formed in a closed curve line, a chain conveyor that moves along the rail, a driver that drives the chain conveyor, and a first and a second variable conveyors that relatively vary lengths of at least two portions of the chain conveyor so that a section of the chain conveyor remains in position while other portions of the chain conveyor moving along the rail.
Abstract:
Halftone phase shift photomasks are provided including a substrate configured to transmit light; a shift pattern on the substrate, the shift pattern including a pattern area on a center portion of the substrate and a blind area disposed on a periphery of the substrate, the shift pattern of the blind area having a greater thickness than a thickness that of the pattern area, and being configured to partially transmit the light; and a light shielding pattern formed on the shift pattern in the blind area and being configured to shield the light. Related methods are also provided herein.
Abstract:
A test apparatus includes a movable stage to support a sample, tips above the stage that have different shapes and alternately perform profiling and milling on the sample, a tip stage connected to a cantilever coupled to the tips, the tip stage to adjust a position of the cantilever, a position sensor to obtain information about a positional relationship between the tips and the sample, a stage controller to control movements of the stage and the tip stage, based on the information about the positional relationship, and a tip controller to select the tips for performing the profiling or milling and to determine conditions for performing milling, wherein a depth of the sample being processed by the milling in the first direction is controlled based on a relationship between a distance between the tips and the sample and a force between the tips and the sample.
Abstract:
A semiconductor device includes an active area extending in a first direction, a first transistor including a first gate electrode and first source and drain areas disposed on the active area, the first source and drain areas being disposed at opposite sides of the first gate electrode, a second transistor including a second gate electrode and second source and drain areas disposed on the active area, the second source and drain areas being disposed at opposite sides of the second gate electrode, and a third transistor including a third gate electrode and third source and drain areas disposed on the active area, the third source and drain areas being disposed at opposite sides of the third gate electrode, and the first gate electrode, the second gate electrode, and the third gate electrode extending in a second direction different from the first direction. The second transistor is configured to turn on and off, based on an operation mode of the semiconductor device.
Abstract:
A semiconductor device includes an active area extending in a first direction, a first transistor including a first gate electrode and first source and drain areas disposed on the active area, the first source and drain areas being disposed at opposite sides of the first gate electrode, a second transistor including a second gate electrode and second source and drain areas disposed on the active area, the second source and drain areas being disposed at opposite sides of the second gate electrode, and a third transistor including a third gate electrode and third source and drain areas disposed on the active area, the third source and drain areas being disposed at opposite sides of the third gate electrode, and the first gate electrode, the second gate electrode, and the third gate electrode extending in a second direction different from the first direction. The second transistor is configured to turn on and off, based on an operation mode of the semiconductor device.
Abstract:
Disclosed are photomasks, methods of fabricating the same, and methods of manufacturing semiconductor devices using the same. The photomask comprises a substrate including a pattern region and a peripheral region around the pattern region, a reflection layer on the pattern region and extending onto the peripheral region, an absorption structure on the reflection layer, and a dielectric pattern on the absorption structure on the peripheral region and exposing the absorption structure on the pattern region.
Abstract:
A phase shift mask having a first region and a second region in a transverse direction includes a transparent layer, a phase shift pattern disposed in the first region, a transmittance control layer pattern disposed in the second region, and a shading layer pattern disposed on the transmittance control layer pattern. The phase shift pattern has a first pattern including a transparent material and a second pattern including metal. The phase shift mask may prevent haze effects through a cleaning process using an alkaline cleaning solution.
Abstract:
A control method of a home appliance, the method including retrieving information about a communication device, authenticating the communication device, registering the authenticated communication device, receiving voice data from the registered communication device, outputting a voice signal corresponding to the received voice data to a user, receiving the voice signal from the user, and transmitting voice data corresponding to the received voice signal to the communication device. When the method is used, even if a user loses a communication device in a home, call is possible using a home appliance such as refrigerator.
Abstract:
A home network system has a home appliance, a portable terminal to receive a control command associated with the home appliance, and an access point to allow the home appliance or the portable terminal to be connected to a wide area network (WAN), wherein the access point notifies the home appliance of the connection of the portable terminal if the portable terminal connects to the access point, so that the home application detects that a user returns home and performs a certain operation as a user connects to the access point when returning home.
Abstract:
Halftone phase shift photomasks are provided including a substrate configured to transmit light; a shift pattern on the substrate, the shift pattern including a pattern area on a center portion of the substrate and a blind area disposed on a periphery of the substrate, the shift pattern of the blind area having a greater thickness than a thickness that of the pattern area, and being configured to partially transmit the light; and a light shielding pattern formed on the shift pattern in the blind area and being configured to shield the light. Related methods are also provided herein.