Abstract:
An apparatus and method for selecting the best beam in a wireless communication system are provided. An operation of a Base Station (BS) includes repeatedly transmitting reference signals beamformed with a first width, receiving a feedback signal indicating at least one preferred-beam having the first width from at least one terminal, determining a direction range within which reference signals beamformed with a second width are to be transmitted and a transmission pattern, based on the at least one preferred-beam having the first width, repeatedly transmitting the reference signals beamformed with the second width within the determined direction range according to the transmission pattern, and receiving a feedback signal indicating at least one preferred-beam having the second width from the at least one terminal.
Abstract:
A base station and terminal use methods of obtaining synchronization and system information in a wireless communication system. An operation of a base station includes generating a synchronization signal to be transmitted through a Synchronization Channel (SCH), generating a broadcast signal to be transmitted through a Broadcast Channel (BCH), and transmitting repetitively the SCH and the BCH by performing beamforming on the channels with different transmission beams.
Abstract:
The present disclosure relates to a communication technique for combining a 5G communication system that supports higher data transmission rates after 4G systems with IoT technology and to the system therefor. The present disclosure can be applied for intelligent services based on 5G communication technology and IoT related technology (for example, smart homes, smart buildings, smart cities, smart cars or connected cars, healthcare, digital education, retail businesses, security and safety related services, and the like). A method for determining an uplink transmission resource of a wireless communication system comprises the steps of: obtaining one or more of first distance information between a first base station supporting a first communication system and a terminal supporting the first communication system, and second distance information between a second base station supporting a second communication system and the terminal; and determining a frequency resource and transmission power for uplink signal transmission of the first terminal based on one or more of the obtained first distance information and second distance information.
Abstract:
Disclosed is a method and device for transmitting and receiving a signal by using modulation techniques in a wireless communication system. The method according to the present invention includes: selecting one of QAM and improved QAM according to at least one predefined criterion; encoding information bits to be transmitted according to a first encoding scheme and mapping encoded information bits to QAM symbols when the QAM is selected; encoding information bits to be transmitted according to a second encoding scheme and mapping encoded information bits to improved QAM symbols when the improved QAM is selected; and transmitting the QAM symbols or the improved QAM symbols through a given resource region.
Abstract:
The present disclosure provides a method for allocating a code for inter-Base Station (BS) coordinated communications in a radio communication system. The method includes grouping terminals, at least more than a predetermined number of whose transmit and receive beams indicated by the terminals' respective favorite beam configuration information correspond to each other, in a same group; and allocating unique codes to terminals in the same group and sending information regarding the allocated code to each of the terminals.
Abstract:
An apparatus and method for selecting the best beam in a wireless communication system are provided. An operation of a Base Station (BS) includes repeatedly transmitting reference signals beamformed with a first width, receiving a feedback signal indicating at least one preferred-beam having the first width from at least one terminal, determining a direction range within which reference signals beamformed with a second width are to be transmitted and a transmission pattern, based on the at least one preferred-beam having the first width, repeatedly transmitting the reference signals beamformed with the second width within the determined direction range according to the transmission pattern, and receiving a feedback signal indicating at least one preferred-beam having the second width from the at least one terminal.
Abstract:
An apparatus and a method for operating a mobile station in a wireless communication system are provided. The method includes receiving first information transmitted on a secondary carrier from a base station, and transmitting second information for feedback related to the secondary carrier at a feedback region in a primary carrier based on the first information to the base station.
Abstract:
Disclosed is a method and apparatus for transmitting information in a communication system. The present invention relates to a millimeter wave beamforming-based 5G or pre-5G wireless communication system for supporting a higher data rate beyond a 4G network or LTE system. A method according to the present invention comprises the steps of: determining the number of blocks and a window size for configuring a transmission period for sliding window superposition coding (SWSC); transmitting control information including the determined number of blocks and window size to a plurality of terminals participating in the SWSC; transmitting, in a first block within the transmission period, a signal in which a first message and a second message are superposition-coded by first and second codes; and when a message notifying that the first message is not successfully decoded is received, transmitting, in a second block, a signal in which the second message and the first message are superposition-coded by the first and second codes.
Abstract:
A communication method and apparatus using analog and digital hybrid beamforming are provided. The method includes receiving a first message including a measurement and selection condition for hybrid beamforming from a Base Station (BS), measuring channels of a plurality of BS transmission beams, selecting at least one BS transmission beam based on channel measurements, transmitting report information about the selected at least one BS transmission beam to the BS, receiving from the BS a second message, estimating an effective channel matrix for the selected final BS transmission beam according to the measurement and report condition, determining feedback information for digital beamforming of the BS based on the effective channel matrix, transmitting the determined feedback information to the BS, and receiving a data burst from the BS according to a Multiple Input Multiple Output (MIMO) mode and/or a configuration scheduled based on the feedback information.
Abstract:
An apparatus and method for selecting the best beam in a wireless communication system are provided. An operation of a Base Station (BS) includes repeatedly transmitting reference signals beamformed with a first width, receiving a feedback signal indicating at least one preferred-beam having the first width from at least one terminal, determining a direction range within which reference signals beamformed with a second width are to be transmitted and a transmission pattern, based on the at least one preferred-beam having the first width, repeatedly transmitting the reference signals beamformed with the second width within the determined direction range according to the transmission pattern, and receiving a feedback signal indicating at least one preferred-beam having the second width from the at least one terminal.