Abstract:
A directional backlight unit and a three-dimensional (3D) image display device including the directional backlight unit are provided. The directional backlight unit includes: a light guide plate, a light source configured to irradiate an incident surface of the light guide plate with a plurality of color lights, and a grating that includes a sub-grating configured to react to all of the plurality of color lights. The directional backlight unit may further include a color filter that corresponds to a plurality of color lights emitted from each sub-grating.
Abstract:
A directional backlight unit is provided, including a light guide plate, a light source, and a grating that is formed on a light-emitting surface of the light guide plate. The grating is configured such that an intensity of one ray of light, of the light irradiated by the light source and diffracted and emitted by the grating, is greater than a sum of intensities of all other rays of light, of the light irradiated by the light source and diffracted and emitted by the grating.
Abstract:
A method of manufacturing a master mold includes forming a plurality of replica resin layers using a mold; forming a replica template by bonding the plurality of replica resin layers on a template; forming a replica mold layer having a pattern corresponding to a pattern of the plurality of replica resin layers using the replica template; forming a flexible stamp having a pattern formed on a surface thereof using the replica mold layer; transferring the pattern formed on the surface of the flexible stamp to a mold resin; and forming a large area master mold by etching a surface of a substrate based on a pattern shape of the mold resin.
Abstract:
In an example embodiment, a textile-based energy generator includes first and second electrode substrates, each of the first and second electrode substrates including a textile structure and an energy generation layer between the first and second electrode substrates, the energy generation layer on at least one of the first and second electrode substrates, the energy generation layer configured to generate electrical energy by at least one of generating friction between different materials and contacting and separating the different materials.
Abstract:
Provided are a directional backlight unit and an image display apparatus including the same. The directional backlight unit includes at least one light source, a light guide plate arranged at a side of the at least one light source and configured to guide light emitted from the at least one light source by total reflection, a plurality of diffraction gratings arranged in a pattern at a surface of the light guide plate and configured to diffract the light and to emit the light diffracted by the plurality of diffraction gratings at a predetermined angle from a front surface; and a mirror arranged at a rear surface of the light guide plate and configured to reflect the light diffracted by the plurality of diffraction gratings toward the light guide plate, the rear surface of the light guide plate being opposite to the front surface of the light guide plate.
Abstract:
A method for manufacturing a pattern structure includes preparing a wafer that has a plurality of fine patterns, generating a first trench by processing the wafer from a first surface to a first depth, and generating a second trench connected to the first trench by processing the wafer from a second surface which is opposite to the first surface to a second depth, thereby cutting the wafer.
Abstract:
A display apparatus including a directional backlight unit and a method of assembling the display apparatus are disclosed. The display apparatus includes an auxiliary structure coupled to an input coupler and a switch panel module.
Abstract:
A curved backlight unit is provided. The backlight unit includes a curved light guide plate having a curvature, a first light source configured to provide a first illumination light to a first surface of the curved light guide plate, an array of a plurality of different grating elements disposed on a second surface of the curved light guide plate and configured to allow the first illumination light to exit the curved light guide plate from the second surface, and a second light source configured to provide a second illumination light to a third surface facing the second surface of the curved light guide plate. The curved light guide plate includes a first area configured to allow the second illumination light to exist at a first intensity and a second area configured to allow the second illumination light to exist at a second intensity that is less than the first intensity
Abstract:
A flexible bimodal sensor includes a gate electrode; a flexible substrate; a source electrode disposed on the flexible substrate; a drain electrode disposed on the flexible substrate apart from the source electrode; a channel layer disposed on the source electrode and the drain electrode and a portion of the flexible substrate between the source electrode and the drain electrode; and a gate insulating layer comprising a plurality of protrusions, the gate insulating layer being disposed on the channel layer and arranged between the channel layer and the gate electrode. The drain electrode outputs a current signal simultaneously indicating a temperature value and a pressure value sensed by the flexible bimodal sensor.
Abstract:
Provided is a pressure sensor including an elastic thin film including a first surface and a second surface that face each other, the elastic thin film including an elastomer material, a plurality of protruding deformable structures patterned on the first surface; a piezoresistive electrode formed along surfaces of the plurality of protruding deformable structures; and a counter electrode disposed to face the piezoresistive electrode.