Abstract:
According to example embodiments, a high electron mobility transistor (HEMT) includes a channel supply layer that induces a two-dimensional electron gas (2DEG) in a channel layer, a source electrode and a drain electrode that are at sides of the channel supply layer, a depletion-forming layer that is on the channel supply layer and contacts the source electrode, a gate insulating layer on the depletion-forming layer, and a gate electrode on the gate insulating layer. The depletion-forming layer forms a depletion region in the 2DEG.
Abstract:
The methods may include forming a first material layer on a substrate, increasing electric resistance of the first material layer, and forming a source pattern and a drain pattern, which are spaced apart from each other, on the first material layer, a band gap of the source and drain patterns greater than a band gap of a first material layer.
Abstract:
A High electron mobility transistor (HEMT) includes a source electrode, a gate electrode, a drain electrode, a channel forming layer in which a two-dimensional electron gas (2DEG) channel is induced, and a channel supplying layer for inducing the 2DEG channel in the channel forming layer. The source electrode and the drain electrode are located on the channel supplying layer. A channel increase layer is between the channel supplying layer and the source and drain electrodes. A thickness of the channel supplying layer is less than about 15 nm.
Abstract:
According to example embodiments, a method of operating a power device includes applying a control voltage to a control electrode of the power device, where the control electrode is electrically separated from a source electrode, a drain electrode, and a gate electrode of the power device. The control voltage is separately applied to the control electrode. The method may include applying a negative control voltage to the control electrode prior to applying a gate voltage to the gate electrode.
Abstract:
According to example embodiments, a HEMT includes a channel supply layer on a channel layer, a p-type semiconductor structure on the channel supply layer, a gate electrode on the p-type semiconductor structure, and source and drain electrodes spaced apart from two sides of the gate electrode respectively. The channel supply layer may have a higher energy bandgap than the channel layer. The p-type semiconductor structure may have an energy bandgap that is different than the channel supply layer. The p-type semiconductor structure may include a hole injection layer (HIL) on the channel supply layer and be configured to inject holes into at least one of the channel layer and the channel supply in an on state. The p-type semiconductor structure may include a depletion forming layer on part of the HIL. The depletion forming layer may have a dopant concentration that is different than the dopant concentration of the HIL.
Abstract:
A high electron mobility transistor (HEMT) according to example embodiments includes a channel layer, a channel supply layer on the channel layer, a source electrode and a drain electrode on at least one of the channel layer and the channel supply layer, a gate electrode between the source electrode and the drain electrode, and a Schottky electrode forming a Schottky contact with the channel supply layer. An upper surface of the channel supply layer may define a Schottky electrode accommodation unit. At least part of the Schottky electrode may be in the Schottky electrode accommodation unit. The Schottky electrode is electrically connected to the source electrode.