Abstract:
Provided are a high electron mobility transistor (HEMT) and a method of manufacturing the HEMT. The HEMT includes: a channel layer comprising a first semiconductor material; a channel supply layer comprising a second semiconductor material and generating two-dimensional electron gas (2DEG) in the channel layer; a source electrode and a drain electrode separated from each other in the channel supply layer; at least one depletion forming unit that is formed on the channel supply layer and forms a depletion region in the 2DEG; at least one gate electrode that is formed on the at least one depletion forming unit; at least one bridge that connects the at least one depletion forming unit and the source electrode; and a contact portion that extends from the at least one bridge under the source electrode.
Abstract:
According to example embodiments, a high electron mobility transistor (HEMT) includes a channel layer; a channel supply layer on the channel layer; a source electrode and a drain electrode spaced apart from each other on one of the channel layer and the channel supply layer; a gate electrode on a part of the channel supply layer between the source electrode and the drain electrode; a first depletion-forming layer between the gate electrode and the channel supply layer; and a at least one second depletion-forming layer on the channel supply layer between the gate electrode and the drain electrode. The at least one second depletion-forming layer is electrically connected to the source electrode.
Abstract:
According to example embodiments, a power device chip includes a plurality of unit power devices classified into a plurality of sectors, a first pad and a second pad. At least one of the first and second pads is divided into a number of pad parts equal to a number of the plurality of sectors. The first pad is connected to first electrodes of the plurality of unit power devices, and the second pad is connected to second electrodes of the plurality of unit power devices. The unit power devices may be diodes. The power device chip may further include third electrodes in the plurality of unit power devices, and a third pad may be connected to the third electrodes. In this case, the unit power devices may be high electron mobility transistors (HEMTs). Pad parts connected to defective sectors may be excluded from bonding.
Abstract:
According to example embodiments, a high electron mobility transistor includes: a channel layer including a 2-dimensional electron gas (2DEG); a contact layer on the channel layer; a channel supply layer on the contact layer; a gate electrode on a portion of the channel layer; and source and drain electrodes on at least one of the channel layer, the contact layer, and the channel supply layer. The contact layer is configured to form an ohmic contact on the channel layer. The contact layer is n-type doped and contains a Group III-V compound semiconductor. The source electrode and the drain electrode are spaced apart from opposite sides of the gate electrode.
Abstract:
A magnetic memory device includes: a free layer for storing information; and a reference layer disposed on a first surface of the free layer. The reference layer includes at least two magnetic domains and a magnetic domain wall between the at least two magnetic domains. The reference layer extends past both ends of the free layer. The magnetic memory device further includes a switching element connected to a second surface of the free layer. Another magnetic memory device includes: a first reference layer having a first magnetic domain wall; a second reference layer having a second magnetic domain wall; and a memory structure between the first and second reference layers. The memory structure includes: a first free layer adjacent to the first reference layer; a second free layer adjacent to the second reference layer; and a switching element between the first and second free layers.
Abstract:
According to example embodiments, a high electron mobility transistor (HEMT) includes: stack including a buffer layer, a channel layer containing a two dimensional electron gas (2DEG) channel, and a channel supply layer sequentially stacked on each other, the stack defining a first hole and a second hole that are spaced apart from each other. A first electrode, a second electrode, and third electrode are spaced apart from each other along a first surface of the channel supply layer. A first pad is on the buffer layer and extends through the first hole of the stack to the first electrode. A second pad is on the buffer layer and extends through the second hole of the stack to the second electrode. A third pad is under the stack and electrically connected to the third electrode.
Abstract:
The methods may include forming a first material layer on a substrate, increasing electric resistance of the first material layer, and forming a source pattern and a drain pattern, which are spaced apart from each other, on the first material layer, a band gap of the source and drain patterns greater than a band gap of a first material layer.
Abstract:
A High electron mobility transistor (HEMT) includes a source electrode, a gate electrode, a drain electrode, a channel forming layer in which a two-dimensional electron gas (2DEG) channel is induced, and a channel supplying layer for inducing the 2DEG channel in the channel forming layer. The source electrode and the drain electrode are located on the channel supplying layer. A channel increase layer is between the channel supplying layer and the source and drain electrodes. A thickness of the channel supplying layer is less than about 15 nm.
Abstract:
According to example embodiments, a method of operating a power device includes applying a control voltage to a control electrode of the power device, where the control electrode is electrically separated from a source electrode, a drain electrode, and a gate electrode of the power device. The control voltage is separately applied to the control electrode. The method may include applying a negative control voltage to the control electrode prior to applying a gate voltage to the gate electrode.
Abstract:
According to example embodiments, a HEMT includes a channel supply layer on a channel layer, a p-type semiconductor structure on the channel supply layer, a gate electrode on the p-type semiconductor structure, and source and drain electrodes spaced apart from two sides of the gate electrode respectively. The channel supply layer may have a higher energy bandgap than the channel layer. The p-type semiconductor structure may have an energy bandgap that is different than the channel supply layer. The p-type semiconductor structure may include a hole injection layer (HIL) on the channel supply layer and be configured to inject holes into at least one of the channel layer and the channel supply in an on state. The p-type semiconductor structure may include a depletion forming layer on part of the HIL. The depletion forming layer may have a dopant concentration that is different than the dopant concentration of the HIL.