Abstract:
According to example embodiments, a high electron mobility transistor (HEMT) includes: stack including a buffer layer, a channel layer containing a two dimensional electron gas (2DEG) channel, and a channel supply layer sequentially stacked on each other, the stack defining a first hole and a second hole that are spaced apart from each other. A first electrode, a second electrode, and third electrode are spaced apart from each other along a first surface of the channel supply layer. A first pad is on the buffer layer and extends through the first hole of the stack to the first electrode. A second pad is on the buffer layer and extends through the second hole of the stack to the second electrode. A third pad is under the stack and electrically connected to the third electrode.
Abstract:
Provided are a high electron mobility transistor (HEMT) and a method of manufacturing the HEMT. The HEMT includes: a channel layer comprising a first semiconductor material; a channel supply layer comprising a second semiconductor material and generating two-dimensional electron gas (2DEG) in the channel layer; a source electrode and a drain electrode separated from each other in the channel supply layer; at least one depletion forming unit that is formed on the channel supply layer and forms a depletion region in the 2DEG; at least one gate electrode that is formed on the at least one depletion forming unit; at least one bridge that connects the at least one depletion forming unit and the source electrode; and a contact portion that extends from the at least one bridge under the source electrode.
Abstract:
According to example embodiments, a high electron mobility transistor (HEMT) includes a channel layer; a channel supply layer on the channel layer; a source electrode and a drain electrode spaced apart from each other on one of the channel layer and the channel supply layer; a gate electrode on a part of the channel supply layer between the source electrode and the drain electrode; a first depletion-forming layer between the gate electrode and the channel supply layer; and a at least one second depletion-forming layer on the channel supply layer between the gate electrode and the drain electrode. The at least one second depletion-forming layer is electrically connected to the source electrode.
Abstract:
The methods may include forming a first material layer on a substrate, increasing electric resistance of the first material layer, and forming a source pattern and a drain pattern, which are spaced apart from each other, on the first material layer, a band gap of the source and drain patterns greater than a band gap of a first material layer.
Abstract:
A High electron mobility transistor (HEMT) includes a source electrode, a gate electrode, a drain electrode, a channel forming layer in which a two-dimensional electron gas (2DEG) channel is induced, and a channel supplying layer for inducing the 2DEG channel in the channel forming layer. The source electrode and the drain electrode are located on the channel supplying layer. A channel increase layer is between the channel supplying layer and the source and drain electrodes. A thickness of the channel supplying layer is less than about 15 nm.
Abstract:
According to example embodiments, a HEMT includes a channel supply layer on a channel layer, a p-type semiconductor structure on the channel supply layer, a gate electrode on the p-type semiconductor structure, and source and drain electrodes spaced apart from two sides of the gate electrode respectively. The channel supply layer may have a higher energy bandgap than the channel layer. The p-type semiconductor structure may have an energy bandgap that is different than the channel supply layer. The p-type semiconductor structure may include a hole injection layer (HIL) on the channel supply layer and be configured to inject holes into at least one of the channel layer and the channel supply in an on state. The p-type semiconductor structure may include a depletion forming layer on part of the HIL. The depletion forming layer may have a dopant concentration that is different than the dopant concentration of the HIL.
Abstract:
A high electron mobility transistor (HEMT) according to example embodiments includes a channel layer, a channel supply layer on the channel layer, a source electrode and a drain electrode on at least one of the channel layer and the channel supply layer, a gate electrode between the source electrode and the drain electrode, and a Schottky electrode forming a Schottky contact with the channel supply layer. An upper surface of the channel supply layer may define a Schottky electrode accommodation unit. At least part of the Schottky electrode may be in the Schottky electrode accommodation unit. The Schottky electrode is electrically connected to the source electrode.
Abstract:
Provided is an image sensor having a hybrid pixel structure in which pixels that sense visible light and pixels that sense ultraviolet light or infrared light are arranged together. For example, the image sensor includes a plurality of first pixels and a plurality of second pixels that are different in size. A width of each of the plurality of second pixels in a horizontal direction is a first integer multiple of a width of each of the plurality of first pixels in the horizontal direction, and a width of each of the plurality of second pixels in a vertical direction is a second integer multiple of a width of each of the plurality of first pixels in the vertical direction. The image sensor enables the pixels sensing ultraviolet light or infrared light, which have different sizes from the pixels sensing visible light, to be efficiently arranged together with the pixels sensing visible light, on the same substrate.
Abstract:
A method of packaging power devices at a wafer level is disclosed. The method includes preparing a wafer having a plurality of nitride power devices thereon, each of the plurality of nitride power devices having a plurality of electrodes thereon; forming a polymer layer on the plurality of nitride power devices; exposing each of the electrodes from the polymer layer; forming a solder bump on the exposed electrodes; forming a molding layer covering the solder bump on the polymer layer; and removing the wafer and exposing the solder bump.
Abstract:
A higher electron mobility transistor (HEMT) and a method of manufacturing the same are disclosed. According to example embodiments, the HEMT may include a channel supply layer on a channel layer, a source electrode and a drain electrode that are on at least one of the channel layer and the channel supply layer, a gate electrode between the source electrode and the drain electrode, and a source pad and a drain pad. The source pad and a drain pad electrically contact the source electrode and the drain electrode, respectively. At least a portion of at least one of the source pad and the drain pad extends into a corresponding one of the source electrode and drain electrode that the at least one of the source pad and the drain pad is in electrical contact therewith.