Abstract:
A battery includes a cathode layer, a cathode current collector on the cathode layer, an anode layer on the cathode layer, an anode current collector on the anode layer, a separator between the cathode layer and the anode layer, and an electrolyte, wherein the cathode layer includes a plurality of crystal grains of a cathode active material and aligned in a first direction, and at least one groove formed in a direction perpendicular to an upper surface of the cathode layer that is in contact with the separator, and wherein a side surface of the cathode layer exposed by the at least one groove is aligned with a crystal direction, a crystal direction, wherein h and k are integers greater than or equal to 1, or a combination thereof, of the crystal grains of the cathode active material.
Abstract:
An electrode for a secondary battery includes a current collector; and an active material structure on the current collector, the activate material structure including: at least one first high-density layer, and at least one second high-density layer, the at least one second high-density layer being further away from the current collector as compared to the at least one first high-density layer; and a low-density layer between the at least one first high-density layer and the at least one second high-density layer, wherein a thickness of the at least one second high-density layer is greater than a thickness of the at least one first high-density layer.
Abstract:
A cathode includes: a cathode current collector; a cathode active material layer on the cathode current collector and including a first surface, and a second surface opposite the first surface and adjacent to the cathode current collector, wherein the cathode active material layer includes a channel structure including a channel extending in a direction from the first surface to the second surface; and a conductive metal layer disposed on a surface of the channel of the channel structure.
Abstract:
A cathode of a three-dimensional lithium secondary is defined by a sintered body including a cathode active material, in which a thickness of the sintered body is in a range of about 5 μm to about 30 μm, and an electrode density of the sintered body is in a range of about 3.7 g/cc to about 4.6 g/cc. The cathode active material may include a lithium cobalt oxide.
Abstract:
Etching compositions are provided. The etching composition includes a phosphoric acid, ammonium ions and a silicon compound. The silicon compound includes a silicon atom, an atomic group having an amino group combined with the silicon atom, and at least two oxygen atoms combined with the silicon atom. Methods utilizing the etching compositions are also provided.
Abstract:
A battery includes a cathode layer, a cathode current collector on the cathode layer, an anode layer on the cathode layer, an anode current collector on the anode layer, a separator between the cathode layer and the anode layer, and an electrolyte, wherein the cathode layer includes a plurality of crystal grains of a cathode active material and aligned in a first direction, and at least one groove formed in a direction perpendicular to an upper surface of the cathode layer that is in contact with the separator, and wherein a side surface of the cathode layer exposed by the at least one groove is aligned with a crystal direction, a crystal direction, wherein h and k are integers greater than or equal to 1, or a combination thereof, of the crystal grains of the cathode active material.
Abstract:
An electrochemical device including a positive electrode current collector; a first protruding portion including a plurality of positive electrodes in electrical contact with the positive electrode current collector, and a first dented portion disposed between each positive electrode of the plurality of positive electrodes; an electrolyte layer including a second protruding portion and a second dented portion respectively disposed on the first protruding portion including the plurality of positive electrodes and the first dented portion disposed between each positive electrode of the plurality of positive electrodes; and a negative electrode current collector layer including a third protruding portion and a third dented portion respectively disposed on the second protruding portion and the second dented portion of the electrolyte layer.
Abstract:
A separator structure for a secondary battery includes: a porous substrate; an intermediate layer on the porous substrate and including lithium fluoride (LiF) and a defluorinated polymer; and a lithium metal layer on the intermediate layer. An anode-separator assembly for a secondary battery includes an anode comprising an anode current collector and an anode active material layer on a surface of the anode current collector, and the separator structure. A secondary battery includes the anode-separator assembly, and a cathode on the porous substrate of the anode-separator assembly.
Abstract:
An electrode structure includes: a current collector layer including a current collector including a feature, wherein the current collector is within the current collector layer, an active material layer provided on the current collector layer, and an adhesive pattern including an adhesive and disposed in the feature of the current collector, wherein the adhesive pattern extends between the current collector layer and the active material layer, and the active material layer is fixed on a top surface of the current collector layer by the adhesive pattern.
Abstract:
A three-dimensional (“3D”) electrode structure includes a current collecting layer, a plurality of plates including an active material and disposed on the current collecting layer, and a plurality of inner support layers disposed between the plurality of plates. The plurality of plates includes first, second, and third plates. An inner support layer of the inner support layers is disposed between the first and second plates, and another inner support layer of the inner support layers is disposed between the second and third plates. The inner support layer between the first and second plates and the another inner support layer between the second and third plates are arranged at different positions in a lengthwise direction of the second plate.