Abstract:
An electronic device includes a first processor; and a second processor; and a third processor. The second processor is configured to detect an event, select one of the first and third processors to perform one or more operations associated with the event, and cause the selected processor to perform the one or more operations.
Abstract:
An image sensor can include a pixel array including a plurality of unit pixels and a row driver arranged in a matrix form that includes a plurality of rows and a plurality of columns. Respective ones of the unit pixels may convent an incident light to an electric signal and may store the electric signal. The row driver may sequentially scan the plurality of rows and may sequentially perform an electronic shutter operation and read-out operation. The electronic shutter operation may reset the stored electric signal in each unit pixel and the read-out operation may read-out the stored electric signal in each unit pixel. The electric shutter operation can include a preliminary shutter operation and a main shutter operation which are sequentially performed on one row. The row driver may overlap the main shutter operation on a first row and the preliminary shutter operation on a second row.
Abstract:
An image sensor can include a pixel array including a plurality of unit pixels and a row driver arranged in a matrix form that includes a plurality of rows and a plurality of columns. Respective ones of the unit pixels may convent an incident light to an electric signal and may store the electric signal. The row driver may sequentially scan the plurality of rows and may sequentially perform an electronic shutter operation and read-out operation. The electronic shutter operation may reset the stored electric signal in each unit pixel and the read-out operation may read-out the stored electric signal in each unit pixel. The electric shutter operation can include a preliminary shutter operation and a main shutter operation which are sequentially performed on one row. The row driver may overlap the main shutter operation on a first row and the preliminary shutter operation on a second row.
Abstract:
Disclosed herein are techniques for verifying the integrity of an electronic device. A normal world virtual processor and a secure world virtual processor are instantiated. An integrity verification agent is executed by the secure world virtual processor. A kernel operation attempted by the normal world virtual processor is intercepted by the secure world virtual processor.
Abstract:
An apparatus and method for processing a user input in an electronic device are provided. The electronic device includes a touch device detecting a touch input; a pressure device detecting a pressure input; and at least one processor. The at least one processor is configured to if the pressure input is detected, generate an event corresponding to the pressure input, determine if the touch input is detected while the pressure input is detected, if the touch input is detected while the pressure input is detected, update the event to correspond to the pressure input and the touch input, and process the updated event.
Abstract:
An electronic device, method of operation thereof, and a recording medium are disclosed. An electronic device includes: a battery; a power management Integrated Circuit (IC) is connected to the battery; a plurality of components receive a power through the power management IC from the battery. A processor is connected to the plurality of components. A memory is electronically connected to the processor and stores instructions controlling the processor to monitor a power amount or an amount of electric current supplied to at least one electronic component among the plurality of the electronic components, and determine whether the power amount or the amount of electric current amount supplied to the at least one monitored electronic component is equal to or exceeds a predetermined value, and reduces a power amount or an amount of electric current of the at least one component or another component related to the at least one component.
Abstract:
A method and an apparatus for detecting a battery state of an electronic device are provided. The electronic device includes a battery, a charger circuit for charging the battery, a measurement circuit for checking a state of the battery, and a processor configured to charge the battery using the charger circuit, determine whether the charging operation satisfies a preset condition, when the charging operation satisfies the preset condition, obtain first state information of the battery using the measurement circuit, determine an abnormal state of the battery at least based on a difference between the first state information and second state information which is obtained when the preset condition is satisfied before the first state information is acquired, and output notification information regarding the abnormal state.
Abstract:
A unit pixel of an image sensor includes a photoelectric conversion unit, a mode control unit, a first signal generation unit and a second signal generation unit. The photoelectric conversion unit generates photo-charges in response to incident light and provides the photo-charges to a first node. The mode control unit prevents the photo-charges from being discharged from the first node in a first operation mode, and generates a sensing current by discharging the photo-charges and generates a sensing voltage proportional to the sensing current in a second operation mode. The first signal generation unit generates an analog signal based on an amount of the photo-charges accumulated in the first node in the first operation mode. The second signal generation unit generates an on signal and an off signal based on a change of the sensing voltage in the second operation mode. The unit pixel provides various sensing outputs effectively.
Abstract:
A method and electronic device for transmitting an emergency signal. The method includes: establishing a short-range communication link with a counterpart electronic device using a first short-range communication network; generating an emergency signal when the short-range communication link with the counterpart electronic device is cut off; and broadcasting the emergency signal using a second short-range communication network.