Abstract:
A hinge structure is provided. The hinge structure includes a first rotary member connected with a first housing, a second rotary member connected with a second housing, a gear structure that makes the first rotary member and the second rotary member operate in conjunction with each other, a first arm connected with the first rotary member, a second arm connected with the second rotary member, a first torque providing member that fastens the first arm and the first rotary member, and a second torque providing member that fastens the second arm and the second rotary member.
Abstract:
An electronic device is provided that includes a housing including a front plate facing a first direction, a rear plate facing a second direction opposite to the first direction, and a lateral member surrounding a space between the front plate and the rear plate and at least partially constructed of a metal material, wherein the front plate includes a first edge having a first length and extending in a third direction, a second edge having a second length longer than the first length and extending in a fourth direction orthogonal to the third direction, a third edge parallel to the first edge, having the first length, and extending in the third direction from the second edge, a fourth edge parallel to the second edge, having the second length, and extending in the fourth direction from the first edge, a first region in which the third edge and the fourth edge meet, and a second region in which the second edge and the third edge meet, a display viewable through the front plate, and an adhesive layer constructed in a closed-curve shape along the first edge, second edge, third edge, and fourth edge of the front plate, wherein, when viewed from above the display, a width of the adhesive layer in the first region and the second region is greater than a width of the adhesive layer outside the first region and the second region.
Abstract:
A method for forming fine patterns includes patterning a hard mask layer on an etch target layer to form sacrificial pillars and a first opening disposed between the sacrificial pillars and exposing the etch target layer, forming a block copolymer layer on the etch target layer exposed through the first opening, phase-separating the block copolymer layer to form first block patterns spaced apart from the sacrificial pillars and a second block pattern, forming first holes by etching the etch target layer exposed by removing the first block patterns, and forming second holes in the etch target layer exposed by removing the sacrificial pillars, the second holes being different from the first holes.
Abstract:
An electronic device is disclosed, including a hinge connecting to first and second housings as to enable foldability, a flexible display spanning at least a portion of the first housing and the second housing, wherein the flexible display is foldable and unfoldable along with folding and unfolding of the first and second housings, a first sealing member extending as to be disposed between an inner surface of the first housing, an inner surface of the second housing, and an outer surface of the flexible display and an elastic support member disposed between a portion of the flexible display, a portion of the inner surface of the first housing, and a portion of the inner surface of the second housing, within a folding area in which the first housing and the second housing are foldable and unfoldable.
Abstract:
According to various embodiments of the disclosure, an electronic device includes: a first housing and a second housing configured to rotate with respect to each other between a first position at which the first housing and the second housing are disposed to face each other and a second position at which the first housing and the second housing are unfolded from the first position at a specified angle with respect to each other, and a hinge module including a hinge disposed between the first housing and the second housing and configured to couple the first housing and the second housing to be rotatable to each other. The hinge module includes: a first hinge plate coupled with the first housing and disposed to be rotatable around a first rotation axis, a second hinge plate coupled with the second housing and disposed to be rotatable around a second rotation axis parallel to the first rotation axis, a rotation plate disposed to be rotatable around a rotation axis perpendicular to the first rotation axis or the second rotation axis, a first interlocking assembly including at least one of a slider, a link or a connection pin configured to couple the first hinge plate and the rotation plate to each other, and a second interlocking assembly including at least one of a slider, a link or a connection pin configured to couple the second hinge plate and the rotation plate to each other. As the first housing and the second housing rotate, the first hinge plate and the second hinge plate are configured to be interlocked with each other by the rotation plate, the first interlocking assembly, and the second interlocking assembly to rotate between the first position and the second position.
Abstract:
An electronic device including a display is provided. The electronic device includes a housing, a display, and a bonding layer. The housing includes a front plate including a flat portion and at least one curved portion bent from a periphery of the flat portion, and disposed to face a first direction, a rear plate disposed to face a second direction that is opposite to the first direction, and a side member including a first surface disposed to face a direction that is perpendicular to the first and second directions, and extending while facing the curved portion and surrounding at least a partial space between the front plate and the rear plate. A first groove is recessed on the first surface in the second direction and in which an edge of the curved portion is accommodated, and a second groove is recessed on the inner side of the housing when viewed from the top of the front plate, the second groove is recessed in the second direction, and to which a bonding liquid is applied.
Abstract:
A method for manufacturing a semiconductor device includes forming first and second lower structures including selection elements on first and second chip regions of a substrate, respectively, forming first and second mold layers on the first and second lower structures, respectively, forming first and second support layers on the first and second mold layers, respectively, patterning the first support layer and the first mold layer to form first holes exposing the first lower structure, forming first lower electrodes in the first holes, forming a support pattern including at least one opening by selectively patterning the first support layer while leaving the second support layer, and removing the first mold layer through the opening. A top surface of the support pattern is disposed at a substantially same level as a top surface of the second support layer.
Abstract:
A method and apparatus for measuring an antenna performance includes obtaining a voice signal received or transmitted through an antenna and corresponding to an original voice signal, quantifying the antenna performance to generate a quantification result by performing a quantification method based on the original voice signal and the obtained voice signal, and displaying the quantification result.