Abstract:
A data storage device may generally be constructed and operated with at least one variable resistance memory cell having a first logic state threshold that is replaced with a second logic state threshold by a controller. The first and second logic states respectively corresponding to a predicted resistance shift that is based upon an operating temperature profile.
Abstract:
Systems and methods presented herein provide a controller that is operable to monitor a plurality of background commands to a storage device over a pre-determined period of time and to determine how often each of the background commands is issued during the pre-determined period of time. The controller is further operable to establish a time interval for each of the background commands, and to issue each of the background commands at their respective time intervals.
Abstract:
A memory controller manages memory access operations through a flash memory interface of a memory array of a solid-state storage device connected to a host. The memory controller executes a first memory access operation in the memory array. The first memory access operation has a first priority. The memory controller detects a suspending memory access operation available for execution in the memory array and having a higher priority than the first priority. The detection operation distinguishes between suspending memory access operations and non-suspending memory access operations. The memory controller suspends execution of the first memory access operation in the memory array and executes one or more memory access operations having higher priorities than the first priority and being available for execution in the memory array. The memory controller resumes the execution of the first memory access operation in the memory array.
Abstract:
Systems and methods presented herein provide a controller that is operable to monitor a plurality of background commands to a storage device over a pre-determined period of time and to determine how often each of the background commands is issued during the pre-determined period of time. The controller is further operable to establish a time interval for each of the background commands, and to issue each of the background commands at their respective time intervals.
Abstract:
A data object is received from a host and stored on a storage compute device. A first mathematical operation is performed on the data object via the storage compute device. An update from the host is received and stored on the storage compute device. The update data is stored separately from the data object and includes a portion of the data object that has subsequently changed. A second mathematical operation is performed on a changed version of the data object using the update data.
Abstract:
A definition is received of at least one data object and a compute object from a host at a storage compute device. A first key is associated with the at least one data object and a second key is associated with the compute object. A command is received from the host to perform a computation that links the first and second keys. The computation is defined by the compute object and acts on the data object. The computation is performed via the storage compute device using the compute object and the data object in response to the command.
Abstract:
Method and apparatus for managing data in a memory. In accordance with some embodiments, a non-volatile (NV) buffer is adapted to store input write data having a selected logical address. A write circuit is adapted to transfer a copy of the input write data to an NV main memory while retaining the stored input write data in the NV buffer. A verify circuit is adapted to perform a verify operation at the conclusion of a predetermined elapsed time interval to verify successful transfer of the copy of the input write data to the NV main memory. The input write data are retained in the NV buffer until successful transfer is verified.
Abstract:
An incremental signal is defined that includes at least one of a duration and a peak voltage that is less than a respective minimum programming time or minimum programming voltage step of a resistive memory element. A characterization procedure is repeatedly performed that at least involves: applying a signal to the memory element, the signal being incremented by the incremental signal during each subsequent application; measuring a first resistance of the memory element in response to the signal; and c) measuring a second resistance of the memory element after a time period has elapsed from the measurement of the first resistance with no programming signal applied. In response to the first and second resistance measurements of the characterization procedure, a characterization parameter of the memory element is formed.
Abstract:
Method and apparatus for managing data in a memory. In accordance with some embodiments, metadata updates are stored in a first tier of a a multi-tier non-volatile memory structure responsive to access operations associated with data objects in the memory structure. The stored metadata updates are logged in a second, lower tier of the memory structure. The stored metadata updates are further migrated to a different location within the first tier responsive to an accumulated count of said access operations.
Abstract:
Method and apparatus for managing data in a memory. In accordance with some embodiments, a non-volatile (NV) buffer is adapted to store input write data having a selected logical address. A write circuit is adapted to transfer a copy of the input write data to an NV main memory while retaining the stored input write data in the NV buffer. A verify circuit is adapted to perform a verify operation at the conclusion of a predetermined elapsed time interval to verify successful transfer of the copy of the input write data to the NV main memory. The input write data are retained in the NV buffer until successful transfer is verified.