Abstract:
Disclosed is a power storage unit which can safely operate over a wide temperature range. The power storage unit includes: a power storage device; a heater for heating the power storage device; a temperature sensor for sensing the temperature of the power storage device; and a control circuit configured to inhibit charge of the power storage device when its temperature is lower than a first temperature or higher than a second temperature. The first temperature is exemplified by a temperature which allows the formation of a dendrite over a negative electrode of the power storage device, whereas the second temperature is exemplified by a temperature which causes decomposition of a passivating film formed over a surface of a negative electrode active material.
Abstract:
A secondary battery in which graphite that is an active material can occlude and release lithium efficiently is provided. Further, a highly reliable secondary battery in which the amount of lithium inserted and extracted into/from graphite that is an active material is prevented from varying is provided. The secondary battery includes a negative electrode including a current collector and graphite provided over the current collector, and a positive electrode. The graphite includes a plurality of graphene layers. Surfaces of the plurality of graphene layers are provided substantially along the direction of an electric field generated between the positive electrode and the negative electrode.
Abstract:
Disclosed is a power storage device including a negative electrode and a positive electrode. The negative electrode includes a negative electrode current collector including a common portion and a plurality of protrusions protruding from the common portion, and a negative electrode active material layer which covers a side surface of the protrusion. The positive electrode faces the negative electrode with an electrolyte provided therebetween. In the plurality of protrusions, a distance between adjacent protrusions is a distance with which adjacent negative electrode active material layers are in contact with each other before the capacity of the negative electrode active material layer reaches the theoretical capacity of the negative electrode active material layer by insertion of carrier ions from the positive electrode.
Abstract:
A power storage device using an organic solvent as a nonaqueous solvent for a nonaqueous electrolyte, in which a CV charging period in CCCV charging can be prevented from being extended and which has high performance, can be provided. The power storage device includes a positive electrode, a negative electrode, and a nonaqueous electrolyte. The nonaqueous electrolyte includes an ionic liquid including an alicyclic quaternary ammonium cation having one or more substituents and a counter anion to the alicyclic quaternary ammonium cation, a cyclic ester, and an alkali metal salt. In particular, in the power storage device, the ionic liquid content is greater than or equal to 70 wt % and less than 100 wt % per unit weight of the ionic liquid and the cyclic ester in the nonaqueous electrolyte, or greater than or equal to 50 wt % and less than 80 wt % per unit weight of the nonaqueous electrolyte.
Abstract:
A document search system that enables efficient document search regardless of the ability of a user is achieved. Document search is performed using a document search system in which database document data is stored. After first document data and second document data are input to the document search system, the document search system extracts a plurality of terms from the first document data. The extraction of the terms is performed using morphological analysis, for example. Next, the extracted terms are weighted on the basis of the second document data. For example, texts included in a document represented by the second document data are classified into first and second texts. Among the terms extracted from the first document data, the weight of the term included in the first text is set larger than the weights of the other terms. The classification of the texts can be performed in accordance with a rule basis or using machine learning. After that, the similarity of the database document data to the first document data is calculated on the basis of the weighted term.
Abstract:
An object is to suppress electrochemical decomposition of an electrolyte solution and the like at a negative electrode in a lithium ion battery or a lithium ion capacitor: thus, irreversible capacity is reduced, cycle performance is improved, or operating temperature range is extended. A negative electrode for a power storage device including a negative electrode current collector, a negative electrode active material layer which is over the negative electrode current collector and includes a plurality of particles of a negative electrode active material, and a film covering part of the negative electrode active material. The film has an insulating property and lithium ion conductivity.
Abstract:
Disclosed is a power storage unit which can safely operate over a wide temperature range. The power storage unit includes: a power storage device; a heater for heating the power storage device; a temperature sensor for sensing the temperature of the power storage device; and a control circuit configured to inhibit charge of the power storage device when its temperature is lower than a first temperature or higher than a second temperature. The first temperature is exemplified by a temperature which allows the formation of a dendrite over a negative electrode of the power storage device, whereas the second temperature is exemplified by a temperature which causes decomposition of a passivating film formed over a surface of a negative electrode active material.
Abstract:
To provide a lithium-ion storage battery or electronic device that is flexible and highly safe. One embodiment of the present invention is a flexible storage battery including a positive electrode, a negative electrode, a separator between the positive electrode and the negative electrode, an exterior body that surrounds the positive electrode, the negative electrode, and the separator, and a wiring provided along the exterior body. At least part of the wiring is more easily breakable by deformation than the exterior body. The wiring is more vulnerable to deformation than the exterior body and thus damaged earlier than the exterior body. Damage to the wiring is detected and an alert is sent to a user; thus, the use of the storage battery can be stopped before the exterior body is damaged.
Abstract:
A power storage device with high output is provided, in which the specific surface area is increased while keeping the easy-to-handle particle size of its active material. The power storage device includes a positive electrode including a positive electrode current collector and a positive electrode active material layer, a negative electrode including a negative electrode current collector and a negative electrode active material layer, and an electrolyte. The negative electrode active material layer includes a negative electrode active material which is a particle in which a plurality of slices of graphite is overlapped with each other with a gap therebetween. It is preferable that the grain diameter of the particle be 1 μm to 50 μm. Further, it is preferable that the electrolyte be in contact with the gap between the slices of graphite.
Abstract:
A lithium-ion secondary battery having stable charge characteristics and lifetime characteristics is manufactured. Before the secondary battery is completed, a positive electrode is subjected to an electrochemical reaction in a large amount of electrolyte solution in advance, so that the positive electrode can have stability. The use of the positive electrode enables the secondary battery to be highly reliable. If a negative electrode is also subjected to an electrochemical reaction in a large amount of electrolyte solution in advance, the secondary battery can be more highly reliable.