Abstract:
The purpose of the present invention is to suppress the fluctuation of a data line voltage that occurs when an analog voltage signal is sampled and held in a data line in a display device provided with a current-driven display element. Transistors (SWr, SWG, SWb) of each demultiplexer (252) are successively switched on, for each predetermined period, in a selection period of a write control line (SW_LR(i)). In a period when the transistor (SWr) is switched on, an analog video signal (Dj) from a data voltage output unit circuit (211d) is applied to a data line (SLrj) and a pixel circuit (50r). When the transistor SWr is then switched off, the voltage held by the data line (SLrj) decreases below the voltage of the analog video signal (Dj) due to a parasitic capacitance (Cssdr). However, the voltage of a voltage fluctuation compensation line (G3_Cnt (i)) changes from a low level to a high level within the selection period. This causes the voltage of the data line (SLrj) to rise via a capacitor (Ccnt), and the decrease in voltage to be compensated for.
Abstract:
An organic EL display device includes a plurality of sub-pixels each including a first organic EL element and a second organic EL element, a temperature information detector configured to measure current-voltage characteristics of the second organic EL element included in each of the sub-pixels, and to detect, on the basis of a result of the measurement, temperature information of the second organic EL element included in each of the sub-pixels, and a correction unit configured to correct a driving signal of the first organic EL element included in each of the sub-pixels on the basis of the temperature information of the second organic EL element included in the same sub-pixel as the sub-pixel including the relevant first organic EL element.
Abstract:
A mask for a vapor deposition apparatus includes an outer frame; a first bar disposed on an inner side of the outer frame and fixed to the outer frame; and a pattern forming portion disposed on the outer frame and the first bar and fixed to the outer frame. The pattern forming portion includes a plurality of mask openings for pattern formation. Each of the plurality of mask openings is disposed along a first direction. The plurality of mask openings are disposed in a second direction orthogonal to the first direction. The first bar is positioned between adjacent two mask openings among the plurality of mask openings when viewed along a third direction orthogonal to the first direction and the second direction, and is in contact with the pattern forming portion.
Abstract:
The method for producing an organic EL display panel includes, in the given order, the steps of: forming a first light-emitting layer by forming a film from a luminescent material of a first luminescent color in a first pixel; performing the etching treatment to remove, while leaving the first light-emitting layer to remain, a thin film of the luminescent material of the first luminescent color which adhered to the second pixel in the step; forming a second light-emitting layer by forming a film from a luminescent material of a second luminescent color different from the first luminescent color in the second pixel; and performing the etching treatment to remove, while leaving the second light-emitting layer to remain, a thin film of the luminescent material of the second luminescent color which adhered to the first pixel in the step.
Abstract:
The present invention provides an organic EL element having high luminous efficacy and productivity and an organic EL panel including the organic EL element. The organic electroluminescent element of the present invention includes, in the given order, an anode, a hole-transport layer, a luminescent unit, an electron-transport layer, and a cathode. The luminescent unit includes a mixed light-emitting layer and includes a luminescent dopant layer at least between the hole-transport layer and the mixed light-emitting layer or between the electron-transport layer and the mixed light-emitting layer. The mixed light-emitting layer contains a first luminescent host material and a first luminescent dopant material. The luminescent dopant layer consists essentially of a second luminescent dopant material and is thinner than the mixed light-emitting layer.
Abstract:
The present invention relates to a vapor deposition device for forming a film on a substrate, including: a vapor deposition chamber; a vapor deposition unit including a vapor deposition mask provided with an opening for pattern formation; and a transport mechanism that is configured to transfer at least one of the substrate and the vapor deposition unit relative to the other in a first direction perpendicular to the normal direction of the vapor deposition mask and that is configured to cause the substrate to rest temporarily at a resting position relative to the vapor deposition unit. The substrate includes a vapor-deposition-target region, and the region does not overlap the opening of the vapor deposition mask when the substrate is at the resting position. The vapor deposition chamber is provided with a first vent and a second vent.
Abstract:
The vapor deposition particle injecting device (20) includes a crucible (22), a holder (21) having at least one injection hole (21a), and plate members (23 through 25) provided in the holder (21). The plate members (23 through 25) have respective openings (23a through 25a) corresponding to the injection hole (21a), and the plate members (23 through 25) are arranged away from each other in a direction perpendicular to the opening planes of the openings. The injection hole (21a) and the openings (23a through 25a) overlap each other in the plan view.
Abstract:
An organic electroluminescence device according to an aspect of the disclosure includes a base material including one face provided with a recessed portion; and a light emitting element including a reflective layer provided on at least a surface of the recessed portion, a filling layer having optical transparency and filling the inside of the recessed portion with the reflective layer interposed between the filling layer and the recessed portion, a first electrode having optical transparency and provided on at least an upper-layer side of the filling layer, an organic layer containing at least a light emitting layer and provided on an upper layer of the first electrode, a second electrode having optical transparency and provided on an upper-layer side of the organic layer, and an edge cover layer covering at least an end portion of the first electrode, and in the organic electroluminescence device, an upper face of the first electrode at a position of the recessed portion is positioned below a plane including an upper face of the reflective layer, and the end portion of the first electrode is located inside the recessed portion and at a distance from the reflective layer.
Abstract:
A restriction unit includes at least one restriction opening configured to allow vapor deposition particles to pass through and a plurality of restriction sections prepared at both sides of the restriction opening. The restriction section has a cross-sectional shape of an inverse concave formed of a top wall and opening walls.
Abstract:
An organic EL device according to one aspect of the present invention includes: a base material in which a recess is provided at an upper surface of the base material; a reflective layer that is provided at least along a surface of the recess; a filling layer that is filled into an inside of the recess via the reflective layer, the filling layer having light transmissivity; a first electrode that is provided at least on a layer above the filling layer, the first electrode having light transmissivity; an organic layer that is provided on a layer above the first electrode, the organic layer comprising at least a light-emitting layer; and a second electrode that is provided on a layer above the organic layer, the second electrode having light transmissivity and light reflectivity. A part of the reflective layer contacts a part of the first electrode.