Abstract:
Junction diodes fabricated in standard CMOS logic processes can be used as program selectors for One-Time Programmable (OTP) devices, such as electrical fuse, contact/via fuse, contact/via anti-fuse, or gate-oxide breakdown anti-fuse, etc. The OTP device has at least one OTP element coupled to at least one diode in a memory cell. The diode can be constructed by P+ and N+ active regions in a CMOS N well, or on an isolated active region as the P and N terminals of the diode. The isolation between P+ and the N+ active regions of the diode in a cell or between cells can be provided by dummy MOS gate, SBL, or STI/LOCOS isolations. The OTP element can be polysilicon, silicided polysilicon, silicide, metal, metal alloy, local interconnect, thermally isolated active region, CMOS gate, or combination thereof.
Abstract:
A low-pin-count non-volatile (NVM) memory with no more than two control signals that can at least program NVM cells, load data to be programmed into output registers, or read the NVM cells. At least one of the NVM cells has at least one NVM element coupled to at least one selector and to a first supply voltage line. The selector is coupled to a second supply voltage line and having a select signal. At least one of the selected NVM cells can be coupled to at least one output register. No more than two control signals can be used to select the at least one NVM cells in the NVM sequentially for programming the data into the at least one NVM cells or loading data into the at least one output registers controlled by the pulse of the first signal and voltage level and/or timing of the second signal. Programming into the NVM cells, or loading data into output registers, can be determined by the voltage levels of the first to the second supply voltage lines. Reading at least one of the NVM cells can be activated by a third signal or by detecting ramping of the first or the second supply voltage line.
Abstract:
Junction diodes fabricated in standard CMOS logic processes can be used as program selectors for reversible resistive devices, such as PCM, RRAM, CBRAM, or other memory cells. The reversible resistive devices have a reversible resistive element coupled to a diode. The diode can be constructed by P+ and N+ active regions on an N well as the P and N terminals of the diode. By applying a voltage or a current between a reversible resistive element and the N terminal of a diode, the reversible resistive device can be programmed into different states based on magnitude, duration, voltage-limit, or current-limit in a reversible manner. The P+ active region of the diode can be isolated from the N+ active region in the N well by using dummy MOS gate, SBL, or STI/LOCOS isolations.
Abstract:
Junction diodes fabricated in standard CMOS logic processes can be used as program selectors for reversible resistive memory cells that can be programmed based on magnitude, duration, voltage-limit, or current-limit of a supply voltage or current. These cells are PCM, RRAM, CBRAM, or other memory cells that have a reversible resistive element coupled to a diode. The diode can be constructed by P+ and N+ active regions on an N well as the P and N terminals of the diode. The memory cells can be used to construct a two-dimensional memory array with the N terminals of the diodes in a row connected as a wordline and the reversible resistive elements in a column connected as a bitline. By applying a voltage or a current to a selected bitline and to a selected wordline to turn on the diode, a selected cell can be programmed into different states reversibly based on magnitude, duration, voltage-limit, or current-limit. The data in the reversible resistive memory can also be read by turning on a selected wordline to couple a selected bitline to a sense amplifier. The wordlines may have high-resistivity local wordlines coupled to low-resistive global wordlines through conductive contact(s) or via(s).
Abstract:
At least one junction diode fabricated in standard CMOS logic processes can be used as program selectors for memory cells that can be programmed based on direction of current flow. These cells are MRAM, RRAM, CBRAM, or other memory cells that have a programmable resistive element coupled to a P terminal of a first diode and to an N terminal of a second diode. The diodes can be constructed by P+ and N+ active regions on an N well as the P and N terminals of the diodes. The memory cells can be used to construct a two-dimensional memory array with the N terminals of the first diodes and the P terminals of the second diodes in a row connected as wordline(s) and the resistive elements in a column connected as a bitline. By applying a high voltage to a selected bitline and a low voltage to a selected wordline to turn on the first diode while disabling the second diode, a selected cell can be programmed into one state. Similarly, by applying a low voltage to a selected bitline and a high voltage to a selected wordline to turn on the second diode while disabling the first diode, a selected cell can be programmed into another state. The data in the resistive memory cell can also be read by turning on a selected wordline to couple a selected bitline to a sense amplifier. The wordlines may have high-resistivity local wordlines coupled to low-resistivity global wordlines through conductive contact(s) or via(s).
Abstract:
Junction diodes fabricated in standard CMOS logic processes can be used as program selectors for One-Time Programmable (OTP) devices, such as electrical fuse, contact/via fuse, contact/via anti-fuse, or gate-oxide breakdown anti-fuse, etc. The diode can be constructed by P+ and N+ active regions on an N well as the P and N terminals of the diode. The OTP device has an OTP element coupled to the diode. The OTP device can be used to construct a two-dimensional OTP memory with the N terminals of the diodes in a row connected as a wordline and the OTP elements in a column connected as a bitline.
Abstract:
Junction diodes fabricated in standard CMOS logic processes can be used as program selectors for One-Time Programmable (OTP) devices, such as electrical fuse, contact/via fuse, contact/via anti-fuse, or gate-oxide breakdown anti-fuse, etc. The OTP device has an OTP element coupled to a diode in a memory cell. The diode can be constructed by P+ and N+ active regions on an N well as the P and N terminals of the diode. By applying a high voltage to the P terminal of a diode and switching the N terminal of a diode to a low voltage for suitable duration of time, a current flows through an OTP element in series with the program selector may change the resistance state. The P+ active region of the diode can be isolated from the N+ active region in the N well by using dummy MOS gate, SBL, or STI/LOCOS isolations. If the resistive element is an interconnect fuse based on CMOS gate material, the resistive element can be coupled to the P+ active region by an abutted contact such that the element, active region, and metal are connected in a single rectangular contact.
Abstract:
Polysilicon diodes fabricated in standard CMOS logic processes can be used as program selectors for reversible resistive devices such as PCRAM, RRAM, CBRAM, or other memory cells. The reversible resistive devices have a reversible resistive element coupled to a diode. The diode can be constructed by P+/N+ implants on a polysilicon as a program selector. By applying a voltage or a current between a reversible resistive element and the N-terminal of a diode, the reversible resistive device can be programmed into different states based on magnitude, duration, voltage-limit, or current-limit in a reversible manner. On the polysilicon diode, the spacing and doping level of a gap between the P- and N-implants can be controlled for different breakdown voltages and leakage currents. The Silicide Block Layer (SBL) can be used to block silicide formation on the top of polysilicon to prevent shorting.
Abstract:
Junction diodes fabricated in standard CMOS logic processes can be used as program selectors for One-Time Programmable (OTP) devices, such as electrical fuse, contact/via fuse, contact/via anti-fuse, or gate-oxide breakdown anti-fuse, etc. The OTP device has an OTP element coupled to a diode in a memory cell. The diode can be constructed by P+ and N+ active regions on an N well as the P and N terminals of the diode. By applying a high voltage to the P terminal of a diode and switching the N terminal of a diode to a low voltage for suitable duration of time, a current flows through an OTP element in series with the program selector may change the resistance state. The P+ active region of the diode can be isolated from the N+ active region in the N well by using dummy MOS gate, SBL, or STI/LOCOS isolations. If the resistive element is an interconnect fuse based on CMOS gate material, the resistive element can be coupled to the P+ active region by an abutted contact such that the element, active region, and metal are connected in a single rectangular contact.
Abstract:
Junction diodes fabricated in standard CMOS logic technologies can be used as program selectors for a programmable resistive device, such as electrical fuse, contact/via fuse, anti-fuse, or emerging nonvolatile memory such as MRAM, PCM, CBRAM, or RRAM. The diode can be constructed by P+ and N+ active regions on an N well as the P and N terminals of the diode. By applying a high voltage to the P terminal of a diode and switching the N terminal of a diode to a low voltage for proper duration of time, a current flows through a resistive element in series with the program selector may change the resistance state. The P+ active region of the diode can be isolated from the N+ active region in the N well by using dummy MOS gate, SBL, or STI isolations. If the resistive element is an interconnect fuse based on CMOS gate material, the resistive element can be coupled to the P+ active region by an abutted contact such that the element, active region, and metal can be connected in a single rectangular contact.